Metamath Proof Explorer


Theorem pmtrfcnv

Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T=pmTrspD
pmtrrn.r R=ranT
Assertion pmtrfcnv FRF-1=F

Proof

Step Hyp Ref Expression
1 pmtrrn.t T=pmTrspD
2 pmtrrn.r R=ranT
3 eqid domFI=domFI
4 1 2 3 pmtrfrn FRDVdomFIDdomFI2𝑜F=TdomFI
5 4 simpld FRDVdomFIDdomFI2𝑜
6 1 pmtrf DVdomFIDdomFI2𝑜TdomFI:DD
7 5 6 syl FRTdomFI:DD
8 4 simprd FRF=TdomFI
9 8 feq1d FRF:DDTdomFI:DD
10 7 9 mpbird FRF:DD
11 1 2 pmtrfinv FRFF=ID
12 10 10 11 11 2fcoidinvd FRF-1=F