Metamath Proof Explorer


Theorem pmtrf

Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrf DVPDP2𝑜TP:DD

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 1 pmtrval DVPDP2𝑜TP=zDifzPPzz
3 simpll2 DVPDP2𝑜zDzPPD
4 1onn 1𝑜ω
5 simpll3 DVPDP2𝑜zDzPP2𝑜
6 df-2o 2𝑜=suc1𝑜
7 5 6 breqtrdi DVPDP2𝑜zDzPPsuc1𝑜
8 simpr DVPDP2𝑜zDzPzP
9 dif1ennn 1𝑜ωPsuc1𝑜zPPz1𝑜
10 4 7 8 9 mp3an2i DVPDP2𝑜zDzPPz1𝑜
11 en1uniel Pz1𝑜PzPz
12 eldifi PzPzPzP
13 10 11 12 3syl DVPDP2𝑜zDzPPzP
14 3 13 sseldd DVPDP2𝑜zDzPPzD
15 simplr DVPDP2𝑜zD¬zPzD
16 14 15 ifclda DVPDP2𝑜zDifzPPzzD
17 2 16 fmpt3d DVPDP2𝑜TP:DD