Metamath Proof Explorer


Theorem pmtrmvd

Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrmvd DVPDP2𝑜domTPI=P

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 1 pmtrf DVPDP2𝑜TP:DD
3 ffn TP:DDTPFnD
4 fndifnfp TPFnDdomTPI=zD|TPzz
5 2 3 4 3syl DVPDP2𝑜domTPI=zD|TPzz
6 1 pmtrfv DVPDP2𝑜zDTPz=ifzPPzz
7 6 neeq1d DVPDP2𝑜zDTPzzifzPPzzz
8 iffalse ¬zPifzPPzz=z
9 8 necon1ai ifzPPzzzzP
10 iftrue zPifzPPzz=Pz
11 10 adantl DVPDP2𝑜zPifzPPzz=Pz
12 1onn 1𝑜ω
13 simpl3 DVPDP2𝑜zPP2𝑜
14 df-2o 2𝑜=suc1𝑜
15 13 14 breqtrdi DVPDP2𝑜zPPsuc1𝑜
16 simpr DVPDP2𝑜zPzP
17 dif1ennn 1𝑜ωPsuc1𝑜zPPz1𝑜
18 12 15 16 17 mp3an2i DVPDP2𝑜zPPz1𝑜
19 en1uniel Pz1𝑜PzPz
20 eldifsni PzPzPzz
21 18 19 20 3syl DVPDP2𝑜zPPzz
22 11 21 eqnetrd DVPDP2𝑜zPifzPPzzz
23 22 ex DVPDP2𝑜zPifzPPzzz
24 9 23 impbid2 DVPDP2𝑜ifzPPzzzzP
25 24 adantr DVPDP2𝑜zDifzPPzzzzP
26 7 25 bitrd DVPDP2𝑜zDTPzzzP
27 26 rabbidva DVPDP2𝑜zD|TPzz=zD|zP
28 incom PD=DP
29 dfin5 DP=zD|zP
30 28 29 eqtri PD=zD|zP
31 27 30 eqtr4di DVPDP2𝑜zD|TPzz=PD
32 simp2 DVPDP2𝑜PD
33 df-ss PDPD=P
34 32 33 sylib DVPDP2𝑜PD=P
35 5 31 34 3eqtrd DVPDP2𝑜domTPI=P