Metamath Proof Explorer


Theorem pmtrmvd

Description: A transposition moves precisely the transposed points. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
Assertion pmtrmvd ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → dom ( ( 𝑇𝑃 ) ∖ I ) = 𝑃 )

Proof

Step Hyp Ref Expression
1 pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 1 pmtrf ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑇𝑃 ) : 𝐷𝐷 )
3 ffn ( ( 𝑇𝑃 ) : 𝐷𝐷 → ( 𝑇𝑃 ) Fn 𝐷 )
4 fndifnfp ( ( 𝑇𝑃 ) Fn 𝐷 → dom ( ( 𝑇𝑃 ) ∖ I ) = { 𝑧𝐷 ∣ ( ( 𝑇𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } )
5 2 3 4 3syl ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → dom ( ( 𝑇𝑃 ) ∖ I ) = { 𝑧𝐷 ∣ ( ( 𝑇𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } )
6 1 pmtrfv ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) → ( ( 𝑇𝑃 ) ‘ 𝑧 ) = if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) )
7 6 neeq1d ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) → ( ( ( 𝑇𝑃 ) ‘ 𝑧 ) ≠ 𝑧 ↔ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) )
8 iffalse ( ¬ 𝑧𝑃 → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = 𝑧 )
9 8 necon1ai ( if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧𝑧𝑃 )
10 iftrue ( 𝑧𝑃 → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = ( 𝑃 ∖ { 𝑧 } ) )
11 10 adantl ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = ( 𝑃 ∖ { 𝑧 } ) )
12 1onn 1o ∈ ω
13 simpl3 ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → 𝑃 ≈ 2o )
14 df-2o 2o = suc 1o
15 13 14 breqtrdi ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → 𝑃 ≈ suc 1o )
16 simpr ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → 𝑧𝑃 )
17 dif1en ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o )
18 12 15 16 17 mp3an2i ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o )
19 en1uniel ( ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) )
20 eldifsni ( ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) → ( 𝑃 ∖ { 𝑧 } ) ≠ 𝑧 )
21 18 19 20 3syl ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≠ 𝑧 )
22 11 21 eqnetrd ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝑃 ) → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 )
23 22 ex ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑧𝑃 → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) )
24 9 23 impbid2 ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧𝑧𝑃 ) )
25 24 adantr ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) → ( if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧𝑧𝑃 ) )
26 7 25 bitrd ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) → ( ( ( 𝑇𝑃 ) ‘ 𝑧 ) ≠ 𝑧𝑧𝑃 ) )
27 26 rabbidva ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → { 𝑧𝐷 ∣ ( ( 𝑇𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } = { 𝑧𝐷𝑧𝑃 } )
28 incom ( 𝑃𝐷 ) = ( 𝐷𝑃 )
29 dfin5 ( 𝐷𝑃 ) = { 𝑧𝐷𝑧𝑃 }
30 28 29 eqtri ( 𝑃𝐷 ) = { 𝑧𝐷𝑧𝑃 }
31 27 30 eqtr4di ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → { 𝑧𝐷 ∣ ( ( 𝑇𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } = ( 𝑃𝐷 ) )
32 simp2 ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → 𝑃𝐷 )
33 df-ss ( 𝑃𝐷 ↔ ( 𝑃𝐷 ) = 𝑃 )
34 32 33 sylib ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑃𝐷 ) = 𝑃 )
35 5 31 34 3eqtrd ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → dom ( ( 𝑇𝑃 ) ∖ I ) = 𝑃 )