| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrfval.t |
|- T = ( pmTrsp ` D ) |
| 2 |
1
|
pmtrf |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( T ` P ) : D --> D ) |
| 3 |
|
ffn |
|- ( ( T ` P ) : D --> D -> ( T ` P ) Fn D ) |
| 4 |
|
fndifnfp |
|- ( ( T ` P ) Fn D -> dom ( ( T ` P ) \ _I ) = { z e. D | ( ( T ` P ) ` z ) =/= z } ) |
| 5 |
2 3 4
|
3syl |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = { z e. D | ( ( T ` P ) ` z ) =/= z } ) |
| 6 |
1
|
pmtrfv |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( T ` P ) ` z ) = if ( z e. P , U. ( P \ { z } ) , z ) ) |
| 7 |
6
|
neeq1d |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( ( T ` P ) ` z ) =/= z <-> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) ) |
| 8 |
|
iffalse |
|- ( -. z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) = z ) |
| 9 |
8
|
necon1ai |
|- ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z -> z e. P ) |
| 10 |
|
iftrue |
|- ( z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) = U. ( P \ { z } ) ) |
| 11 |
10
|
adantl |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> if ( z e. P , U. ( P \ { z } ) , z ) = U. ( P \ { z } ) ) |
| 12 |
|
1onn |
|- 1o e. _om |
| 13 |
|
simpl3 |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> P ~~ 2o ) |
| 14 |
|
df-2o |
|- 2o = suc 1o |
| 15 |
13 14
|
breqtrdi |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> P ~~ suc 1o ) |
| 16 |
|
simpr |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> z e. P ) |
| 17 |
|
dif1ennn |
|- ( ( 1o e. _om /\ P ~~ suc 1o /\ z e. P ) -> ( P \ { z } ) ~~ 1o ) |
| 18 |
12 15 16 17
|
mp3an2i |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> ( P \ { z } ) ~~ 1o ) |
| 19 |
|
en1uniel |
|- ( ( P \ { z } ) ~~ 1o -> U. ( P \ { z } ) e. ( P \ { z } ) ) |
| 20 |
|
eldifsni |
|- ( U. ( P \ { z } ) e. ( P \ { z } ) -> U. ( P \ { z } ) =/= z ) |
| 21 |
18 19 20
|
3syl |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> U. ( P \ { z } ) =/= z ) |
| 22 |
11 21
|
eqnetrd |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. P ) -> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) |
| 23 |
22
|
ex |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( z e. P -> if ( z e. P , U. ( P \ { z } ) , z ) =/= z ) ) |
| 24 |
9 23
|
impbid2 |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z <-> z e. P ) ) |
| 25 |
24
|
adantr |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( if ( z e. P , U. ( P \ { z } ) , z ) =/= z <-> z e. P ) ) |
| 26 |
7 25
|
bitrd |
|- ( ( ( D e. V /\ P C_ D /\ P ~~ 2o ) /\ z e. D ) -> ( ( ( T ` P ) ` z ) =/= z <-> z e. P ) ) |
| 27 |
26
|
rabbidva |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> { z e. D | ( ( T ` P ) ` z ) =/= z } = { z e. D | z e. P } ) |
| 28 |
|
incom |
|- ( P i^i D ) = ( D i^i P ) |
| 29 |
|
dfin5 |
|- ( D i^i P ) = { z e. D | z e. P } |
| 30 |
28 29
|
eqtri |
|- ( P i^i D ) = { z e. D | z e. P } |
| 31 |
27 30
|
eqtr4di |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> { z e. D | ( ( T ` P ) ` z ) =/= z } = ( P i^i D ) ) |
| 32 |
|
simp2 |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> P C_ D ) |
| 33 |
|
dfss2 |
|- ( P C_ D <-> ( P i^i D ) = P ) |
| 34 |
32 33
|
sylib |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> ( P i^i D ) = P ) |
| 35 |
5 31 34
|
3eqtrd |
|- ( ( D e. V /\ P C_ D /\ P ~~ 2o ) -> dom ( ( T ` P ) \ _I ) = P ) |