Metamath Proof Explorer


Theorem pmtrfv

Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
Assertion pmtrfv ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → ( ( 𝑇𝑃 ) ‘ 𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )

Proof

Step Hyp Ref Expression
1 pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 1 pmtrval ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑇𝑃 ) = ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) )
3 2 fveq1d ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( ( 𝑇𝑃 ) ‘ 𝑍 ) = ( ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) )
4 3 adantr ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → ( ( 𝑇𝑃 ) ‘ 𝑍 ) = ( ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) )
5 eqid ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) )
6 eleq1 ( 𝑧 = 𝑍 → ( 𝑧𝑃𝑍𝑃 ) )
7 sneq ( 𝑧 = 𝑍 → { 𝑧 } = { 𝑍 } )
8 7 difeq2d ( 𝑧 = 𝑍 → ( 𝑃 ∖ { 𝑧 } ) = ( 𝑃 ∖ { 𝑍 } ) )
9 8 unieqd ( 𝑧 = 𝑍 ( 𝑃 ∖ { 𝑧 } ) = ( 𝑃 ∖ { 𝑍 } ) )
10 id ( 𝑧 = 𝑍𝑧 = 𝑍 )
11 6 9 10 ifbieq12d ( 𝑧 = 𝑍 → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )
12 simpr ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → 𝑍𝐷 )
13 simpl3 ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → 𝑃 ≈ 2o )
14 relen Rel ≈
15 14 brrelex1i ( 𝑃 ≈ 2o𝑃 ∈ V )
16 difexg ( 𝑃 ∈ V → ( 𝑃 ∖ { 𝑍 } ) ∈ V )
17 uniexg ( ( 𝑃 ∖ { 𝑍 } ) ∈ V → ( 𝑃 ∖ { 𝑍 } ) ∈ V )
18 13 15 16 17 4syl ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → ( 𝑃 ∖ { 𝑍 } ) ∈ V )
19 ifexg ( ( ( 𝑃 ∖ { 𝑍 } ) ∈ V ∧ 𝑍𝐷 ) → if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ∈ V )
20 18 19 sylancom ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ∈ V )
21 5 11 12 20 fvmptd3 ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → ( ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )
22 4 21 eqtrd ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → ( ( 𝑇𝑃 ) ‘ 𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )