Metamath Proof Explorer


Theorem pmtrrn

Description: Transposing two points gives a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T=pmTrspD
pmtrrn.r R=ranT
Assertion pmtrrn DVPDP2𝑜TPR

Proof

Step Hyp Ref Expression
1 pmtrrn.t T=pmTrspD
2 pmtrrn.r R=ranT
3 mptexg DVyDifyzzyyV
4 3 ralrimivw DVzx𝒫D|x2𝑜yDifyzzyyV
5 4 3ad2ant1 DVPDP2𝑜zx𝒫D|x2𝑜yDifyzzyyV
6 eqid zx𝒫D|x2𝑜yDifyzzyy=zx𝒫D|x2𝑜yDifyzzyy
7 6 fnmpt zx𝒫D|x2𝑜yDifyzzyyVzx𝒫D|x2𝑜yDifyzzyyFnx𝒫D|x2𝑜
8 5 7 syl DVPDP2𝑜zx𝒫D|x2𝑜yDifyzzyyFnx𝒫D|x2𝑜
9 1 pmtrfval DVT=zx𝒫D|x2𝑜yDifyzzyy
10 9 3ad2ant1 DVPDP2𝑜T=zx𝒫D|x2𝑜yDifyzzyy
11 10 fneq1d DVPDP2𝑜TFnx𝒫D|x2𝑜zx𝒫D|x2𝑜yDifyzzyyFnx𝒫D|x2𝑜
12 8 11 mpbird DVPDP2𝑜TFnx𝒫D|x2𝑜
13 breq1 x=Px2𝑜P2𝑜
14 elpw2g DVP𝒫DPD
15 14 biimpar DVPDP𝒫D
16 15 3adant3 DVPDP2𝑜P𝒫D
17 simp3 DVPDP2𝑜P2𝑜
18 13 16 17 elrabd DVPDP2𝑜Px𝒫D|x2𝑜
19 fnfvelrn TFnx𝒫D|x2𝑜Px𝒫D|x2𝑜TPranT
20 12 18 19 syl2anc DVPDP2𝑜TPranT
21 20 2 eleqtrrdi DVPDP2𝑜TPR