Metamath Proof Explorer


Theorem pmtrval

Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrval DVPDP2𝑜TP=zDifzPPzz

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 1 pmtrfval DVT=py𝒫D|y2𝑜zDifzppzz
3 2 fveq1d DVTP=py𝒫D|y2𝑜zDifzppzzP
4 3 3ad2ant1 DVPDP2𝑜TP=py𝒫D|y2𝑜zDifzppzzP
5 eqid py𝒫D|y2𝑜zDifzppzz=py𝒫D|y2𝑜zDifzppzz
6 eleq2 p=PzpzP
7 difeq1 p=Ppz=Pz
8 7 unieqd p=Ppz=Pz
9 6 8 ifbieq1d p=Pifzppzz=ifzPPzz
10 9 mpteq2dv p=PzDifzppzz=zDifzPPzz
11 breq1 y=Py2𝑜P2𝑜
12 elpw2g DVP𝒫DPD
13 12 biimpar DVPDP𝒫D
14 13 3adant3 DVPDP2𝑜P𝒫D
15 simp3 DVPDP2𝑜P2𝑜
16 11 14 15 elrabd DVPDP2𝑜Py𝒫D|y2𝑜
17 mptexg DVzDifzPPzzV
18 17 3ad2ant1 DVPDP2𝑜zDifzPPzzV
19 5 10 16 18 fvmptd3 DVPDP2𝑜py𝒫D|y2𝑜zDifzppzzP=zDifzPPzz
20 4 19 eqtrd DVPDP2𝑜TP=zDifzPPzz