| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t |  |-  T = ( pmTrsp ` D ) | 
						
							| 2 |  | pmtrrn.r |  |-  R = ran T | 
						
							| 3 |  | eqid |  |-  dom ( F \ _I ) = dom ( F \ _I ) | 
						
							| 4 | 1 2 3 | pmtrfrn |  |-  ( F e. R -> ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) /\ F = ( T ` dom ( F \ _I ) ) ) ) | 
						
							| 5 | 4 | simpld |  |-  ( F e. R -> ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) ) | 
						
							| 6 | 1 | pmtrf |  |-  ( ( D e. _V /\ dom ( F \ _I ) C_ D /\ dom ( F \ _I ) ~~ 2o ) -> ( T ` dom ( F \ _I ) ) : D --> D ) | 
						
							| 7 | 5 6 | syl |  |-  ( F e. R -> ( T ` dom ( F \ _I ) ) : D --> D ) | 
						
							| 8 | 4 | simprd |  |-  ( F e. R -> F = ( T ` dom ( F \ _I ) ) ) | 
						
							| 9 | 8 | feq1d |  |-  ( F e. R -> ( F : D --> D <-> ( T ` dom ( F \ _I ) ) : D --> D ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( F e. R -> F : D --> D ) | 
						
							| 11 | 1 2 | pmtrfinv |  |-  ( F e. R -> ( F o. F ) = ( _I |` D ) ) | 
						
							| 12 | 10 10 11 11 | 2fcoidinvd |  |-  ( F e. R -> `' F = F ) |