| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrrn.r | ⊢ 𝑅  =  ran  𝑇 | 
						
							| 3 |  | eqid | ⊢ dom  ( 𝐹  ∖   I  )  =  dom  ( 𝐹  ∖   I  ) | 
						
							| 4 | 1 2 3 | pmtrfrn | ⊢ ( 𝐹  ∈  𝑅  →  ( ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o )  ∧  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) ) | 
						
							| 5 | 4 | simpld | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o ) ) | 
						
							| 6 | 1 | pmtrf | ⊢ ( ( 𝐷  ∈  V  ∧  dom  ( 𝐹  ∖   I  )  ⊆  𝐷  ∧  dom  ( 𝐹  ∖   I  )  ≈  2o )  →  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 8 | 4 | simprd | ⊢ ( 𝐹  ∈  𝑅  →  𝐹  =  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) ) | 
						
							| 9 | 8 | feq1d | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐹 : 𝐷 ⟶ 𝐷  ↔  ( 𝑇 ‘ dom  ( 𝐹  ∖   I  ) ) : 𝐷 ⟶ 𝐷 ) ) | 
						
							| 10 | 7 9 | mpbird | ⊢ ( 𝐹  ∈  𝑅  →  𝐹 : 𝐷 ⟶ 𝐷 ) | 
						
							| 11 | 1 2 | pmtrfinv | ⊢ ( 𝐹  ∈  𝑅  →  ( 𝐹  ∘  𝐹 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 12 | 10 10 11 11 | 2fcoidinvd | ⊢ ( 𝐹  ∈  𝑅  →  ◡ 𝐹  =  𝐹 ) |