Description: A transposition function is an involution. (Contributed by Stefan O'Rear, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtrrn.t | |
|
pmtrrn.r | |
||
Assertion | pmtrfinv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | |
|
2 | pmtrrn.r | |
|
3 | eqid | |
|
4 | 1 2 3 | pmtrfrn | |
5 | 4 | simpld | |
6 | 1 | pmtrf | |
7 | 5 6 | syl | |
8 | 4 | simprd | |
9 | 8 | feq1d | |
10 | 7 9 | mpbird | |
11 | fco | |
|
12 | 11 | anidms | |
13 | ffn | |
|
14 | 10 12 13 | 3syl | |
15 | fnresi | |
|
16 | 15 | a1i | |
17 | 1 2 3 | pmtrffv | |
18 | iftrue | |
|
19 | 17 18 | sylan9eq | |
20 | 19 | fveq2d | |
21 | simpll | |
|
22 | 5 | simp2d | |
23 | 22 | ad2antrr | |
24 | 1onn | |
|
25 | 5 | simp3d | |
26 | df-2o | |
|
27 | 25 26 | breqtrdi | |
28 | 27 | ad2antrr | |
29 | simpr | |
|
30 | dif1ennn | |
|
31 | 24 28 29 30 | mp3an2i | |
32 | en1uniel | |
|
33 | 31 32 | syl | |
34 | 33 | eldifad | |
35 | 23 34 | sseldd | |
36 | 1 2 3 | pmtrffv | |
37 | 21 35 36 | syl2anc | |
38 | iftrue | |
|
39 | 34 38 | syl | |
40 | 25 | adantr | |
41 | en2other2 | |
|
42 | 41 | ancoms | |
43 | 40 42 | sylan | |
44 | 39 43 | eqtrd | |
45 | 37 44 | eqtrd | |
46 | 20 45 | eqtrd | |
47 | 10 | ffnd | |
48 | fnelnfp | |
|
49 | 47 48 | sylan | |
50 | 49 | necon2bbid | |
51 | 50 | biimpar | |
52 | fveq2 | |
|
53 | id | |
|
54 | 52 53 | eqtrd | |
55 | 51 54 | syl | |
56 | 46 55 | pm2.61dan | |
57 | fvco2 | |
|
58 | 47 57 | sylan | |
59 | fvresi | |
|
60 | 59 | adantl | |
61 | 56 58 60 | 3eqtr4d | |
62 | 14 16 61 | eqfnfvd | |