Metamath Proof Explorer


Theorem invoppggim

Description: The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypotheses invoppggim.o O=opp𝑔G
invoppggim.i I=invgG
Assertion invoppggim GGrpIGGrpIsoO

Proof

Step Hyp Ref Expression
1 invoppggim.o O=opp𝑔G
2 invoppggim.i I=invgG
3 eqid BaseG=BaseG
4 1 3 oppgbas BaseG=BaseO
5 eqid +G=+G
6 eqid +O=+O
7 id GGrpGGrp
8 1 oppggrp GGrpOGrp
9 3 2 grpinvf GGrpI:BaseGBaseG
10 3 5 2 grpinvadd GGrpxBaseGyBaseGIx+Gy=Iy+GIx
11 10 3expb GGrpxBaseGyBaseGIx+Gy=Iy+GIx
12 5 1 6 oppgplus Ix+OIy=Iy+GIx
13 11 12 eqtr4di GGrpxBaseGyBaseGIx+Gy=Ix+OIy
14 3 4 5 6 7 8 9 13 isghmd GGrpIGGrpHomO
15 3 2 7 grpinvf1o GGrpI:BaseG1-1 ontoBaseG
16 3 4 isgim IGGrpIsoOIGGrpHomOI:BaseG1-1 ontoBaseG
17 14 15 16 sylanbrc GGrpIGGrpIsoO