Metamath Proof Explorer


Theorem symginv

Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses symggrp.1 G = SymGrp A
symginv.2 B = Base G
symginv.3 N = inv g G
Assertion symginv F B N F = F -1

Proof

Step Hyp Ref Expression
1 symggrp.1 G = SymGrp A
2 symginv.2 B = Base G
3 symginv.3 N = inv g G
4 1 2 elsymgbas2 F B F B F : A 1-1 onto A
5 4 ibi F B F : A 1-1 onto A
6 f1ocnv F : A 1-1 onto A F -1 : A 1-1 onto A
7 5 6 syl F B F -1 : A 1-1 onto A
8 cnvexg F B F -1 V
9 1 2 elsymgbas2 F -1 V F -1 B F -1 : A 1-1 onto A
10 8 9 syl F B F -1 B F -1 : A 1-1 onto A
11 7 10 mpbird F B F -1 B
12 eqid + G = + G
13 1 2 12 symgov F B F -1 B F + G F -1 = F F -1
14 11 13 mpdan F B F + G F -1 = F F -1
15 f1ococnv2 F : A 1-1 onto A F F -1 = I A
16 5 15 syl F B F F -1 = I A
17 1 2 elbasfv F B A V
18 1 symgid A V I A = 0 G
19 17 18 syl F B I A = 0 G
20 14 16 19 3eqtrd F B F + G F -1 = 0 G
21 1 symggrp A V G Grp
22 17 21 syl F B G Grp
23 id F B F B
24 eqid 0 G = 0 G
25 2 12 24 3 grpinvid1 G Grp F B F -1 B N F = F -1 F + G F -1 = 0 G
26 22 23 11 25 syl3anc F B N F = F -1 F + G F -1 = 0 G
27 20 26 mpbird F B N F = F -1