Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgsubmefmndALT.m | No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |- | |
symgsubmefmndALT.g | |
||
symgsubmefmndALT.b | |
||
Assertion | symgsubmefmndALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgsubmefmndALT.m | Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |- | |
2 | symgsubmefmndALT.g | |
|
3 | symgsubmefmndALT.b | |
|
4 | 1 | efmndmnd | |
5 | 2 3 1 | symgressbas | |
6 | 2 | symggrp | |
7 | grpmnd | |
|
8 | 6 7 | syl | |
9 | 5 8 | eqeltrrid | |
10 | 2 | idresperm | |
11 | 1 | efmndid | |
12 | 3 | eqcomi | |
13 | 12 | a1i | |
14 | 10 11 13 | 3eltr3d | |
15 | 2 3 | symgbasmap | |
16 | 15 | ssriv | |
17 | eqid | |
|
18 | 1 17 | efmndbas | |
19 | 16 18 | sseqtrri | |
20 | 14 19 | jctil | |
21 | eqid | |
|
22 | 17 21 | issubmndb | |
23 | 4 9 20 22 | syl21anbrc | |