Metamath Proof Explorer


Theorem symgsubmefmndALT

Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses symgsubmefmndALT.m No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
symgsubmefmndALT.g G=SymGrpA
symgsubmefmndALT.b B=BaseG
Assertion symgsubmefmndALT AVBSubMndM

Proof

Step Hyp Ref Expression
1 symgsubmefmndALT.m Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
2 symgsubmefmndALT.g G=SymGrpA
3 symgsubmefmndALT.b B=BaseG
4 1 efmndmnd AVMMnd
5 2 3 1 symgressbas G=M𝑠B
6 2 symggrp AVGGrp
7 grpmnd GGrpGMnd
8 6 7 syl AVGMnd
9 5 8 eqeltrrid AVM𝑠BMnd
10 2 idresperm AVIABaseG
11 1 efmndid AVIA=0M
12 3 eqcomi BaseG=B
13 12 a1i AVBaseG=B
14 10 11 13 3eltr3d AV0MB
15 2 3 symgbasmap fBfAA
16 15 ssriv BAA
17 eqid BaseM=BaseM
18 1 17 efmndbas BaseM=AA
19 16 18 sseqtrri BBaseM
20 14 19 jctil AVBBaseM0MB
21 eqid 0M=0M
22 17 21 issubmndb BSubMndMMMndM𝑠BMndBBaseM0MB
23 4 9 20 22 syl21anbrc AVBSubMndM