Step |
Hyp |
Ref |
Expression |
1 |
|
symgsubmefmndALT.m |
|- M = ( EndoFMnd ` A ) |
2 |
|
symgsubmefmndALT.g |
|- G = ( SymGrp ` A ) |
3 |
|
symgsubmefmndALT.b |
|- B = ( Base ` G ) |
4 |
1
|
efmndmnd |
|- ( A e. V -> M e. Mnd ) |
5 |
2 3 1
|
symgressbas |
|- G = ( M |`s B ) |
6 |
2
|
symggrp |
|- ( A e. V -> G e. Grp ) |
7 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
8 |
6 7
|
syl |
|- ( A e. V -> G e. Mnd ) |
9 |
5 8
|
eqeltrrid |
|- ( A e. V -> ( M |`s B ) e. Mnd ) |
10 |
2
|
idresperm |
|- ( A e. V -> ( _I |` A ) e. ( Base ` G ) ) |
11 |
1
|
efmndid |
|- ( A e. V -> ( _I |` A ) = ( 0g ` M ) ) |
12 |
3
|
eqcomi |
|- ( Base ` G ) = B |
13 |
12
|
a1i |
|- ( A e. V -> ( Base ` G ) = B ) |
14 |
10 11 13
|
3eltr3d |
|- ( A e. V -> ( 0g ` M ) e. B ) |
15 |
2 3
|
symgbasmap |
|- ( f e. B -> f e. ( A ^m A ) ) |
16 |
15
|
ssriv |
|- B C_ ( A ^m A ) |
17 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
18 |
1 17
|
efmndbas |
|- ( Base ` M ) = ( A ^m A ) |
19 |
16 18
|
sseqtrri |
|- B C_ ( Base ` M ) |
20 |
14 19
|
jctil |
|- ( A e. V -> ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) |
21 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
22 |
17 21
|
issubmndb |
|- ( B e. ( SubMnd ` M ) <-> ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) ) |
23 |
4 9 20 22
|
syl21anbrc |
|- ( A e. V -> B e. ( SubMnd ` M ) ) |