Step |
Hyp |
Ref |
Expression |
1 |
|
symgsubmefmndALT.m |
⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) |
2 |
|
symgsubmefmndALT.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
3 |
|
symgsubmefmndALT.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
1
|
efmndmnd |
⊢ ( 𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd ) |
5 |
2 3 1
|
symgressbas |
⊢ 𝐺 = ( 𝑀 ↾s 𝐵 ) |
6 |
2
|
symggrp |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
7 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
9 |
5 8
|
eqeltrrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) |
10 |
2
|
idresperm |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
11 |
1
|
efmndid |
⊢ ( 𝐴 ∈ 𝑉 → ( I ↾ 𝐴 ) = ( 0g ‘ 𝑀 ) ) |
12 |
3
|
eqcomi |
⊢ ( Base ‘ 𝐺 ) = 𝐵 |
13 |
12
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( Base ‘ 𝐺 ) = 𝐵 ) |
14 |
10 11 13
|
3eltr3d |
⊢ ( 𝐴 ∈ 𝑉 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
15 |
2 3
|
symgbasmap |
⊢ ( 𝑓 ∈ 𝐵 → 𝑓 ∈ ( 𝐴 ↑m 𝐴 ) ) |
16 |
15
|
ssriv |
⊢ 𝐵 ⊆ ( 𝐴 ↑m 𝐴 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
18 |
1 17
|
efmndbas |
⊢ ( Base ‘ 𝑀 ) = ( 𝐴 ↑m 𝐴 ) |
19 |
16 18
|
sseqtrri |
⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
20 |
14 19
|
jctil |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
22 |
17 21
|
issubmndb |
⊢ ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ) ) ) |
23 |
4 9 20 22
|
syl21anbrc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |