Metamath Proof Explorer


Theorem symgsubmefmndALT

Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . Alternate proof based on issubmndb and not on injsubmefmnd and sursubmefmnd . (Contributed by AV, 18-Feb-2024) (Revised by AV, 30-Mar-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses symgsubmefmndALT.m 𝑀 = ( EndoFMnd ‘ 𝐴 )
symgsubmefmndALT.g 𝐺 = ( SymGrp ‘ 𝐴 )
symgsubmefmndALT.b 𝐵 = ( Base ‘ 𝐺 )
Assertion symgsubmefmndALT ( 𝐴𝑉𝐵 ∈ ( SubMnd ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 symgsubmefmndALT.m 𝑀 = ( EndoFMnd ‘ 𝐴 )
2 symgsubmefmndALT.g 𝐺 = ( SymGrp ‘ 𝐴 )
3 symgsubmefmndALT.b 𝐵 = ( Base ‘ 𝐺 )
4 1 efmndmnd ( 𝐴𝑉𝑀 ∈ Mnd )
5 2 3 1 symgressbas 𝐺 = ( 𝑀s 𝐵 )
6 2 symggrp ( 𝐴𝑉𝐺 ∈ Grp )
7 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
8 6 7 syl ( 𝐴𝑉𝐺 ∈ Mnd )
9 5 8 eqeltrrid ( 𝐴𝑉 → ( 𝑀s 𝐵 ) ∈ Mnd )
10 2 idresperm ( 𝐴𝑉 → ( I ↾ 𝐴 ) ∈ ( Base ‘ 𝐺 ) )
11 1 efmndid ( 𝐴𝑉 → ( I ↾ 𝐴 ) = ( 0g𝑀 ) )
12 3 eqcomi ( Base ‘ 𝐺 ) = 𝐵
13 12 a1i ( 𝐴𝑉 → ( Base ‘ 𝐺 ) = 𝐵 )
14 10 11 13 3eltr3d ( 𝐴𝑉 → ( 0g𝑀 ) ∈ 𝐵 )
15 2 3 symgbasmap ( 𝑓𝐵𝑓 ∈ ( 𝐴m 𝐴 ) )
16 15 ssriv 𝐵 ⊆ ( 𝐴m 𝐴 )
17 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
18 1 17 efmndbas ( Base ‘ 𝑀 ) = ( 𝐴m 𝐴 )
19 16 18 sseqtrri 𝐵 ⊆ ( Base ‘ 𝑀 )
20 14 19 jctil ( 𝐴𝑉 → ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝐵 ) )
21 eqid ( 0g𝑀 ) = ( 0g𝑀 )
22 17 21 issubmndb ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑀 ∈ Mnd ∧ ( 𝑀s 𝐵 ) ∈ Mnd ) ∧ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝐵 ) ) )
23 4 9 20 22 syl21anbrc ( 𝐴𝑉𝐵 ∈ ( SubMnd ‘ 𝑀 ) )