Metamath Proof Explorer


Theorem symgbasmap

Description: A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024)

Ref Expression
Hypotheses symgbas.1 G=SymGrpA
symgbas.2 B=BaseG
Assertion symgbasmap FBFAA

Proof

Step Hyp Ref Expression
1 symgbas.1 G=SymGrpA
2 symgbas.2 B=BaseG
3 1 2 symgbasf FBF:AA
4 simpr FBF:AAF:AA
5 dmfex FBF:AAAV
6 5 5 elmapd FBF:AAFAAF:AA
7 4 6 mpbird FBF:AAFAA
8 3 7 mpdan FBFAA