Metamath Proof Explorer


Theorem 3eltr3d

Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses 3eltr3d.1 φAB
3eltr3d.2 φA=C
3eltr3d.3 φB=D
Assertion 3eltr3d φCD

Proof

Step Hyp Ref Expression
1 3eltr3d.1 φAB
2 3eltr3d.2 φA=C
3 3eltr3d.3 φB=D
4 1 3 eleqtrd φAD
5 2 4 eqeltrrd φCD