| Step |
Hyp |
Ref |
Expression |
| 1 |
|
galactghm.x |
|
| 2 |
|
galactghm.h |
|
| 3 |
|
galactghm.f |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
gagrp |
|
| 8 |
|
gaset |
|
| 9 |
2
|
symggrp |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
1 11
|
gapm |
|
| 13 |
8
|
adantr |
|
| 14 |
2 4
|
elsymgbas |
|
| 15 |
13 14
|
syl |
|
| 16 |
12 15
|
mpbird |
|
| 17 |
16 3
|
fmptd |
|
| 18 |
|
df-3an |
|
| 19 |
1 5
|
gaass |
|
| 20 |
18 19
|
sylan2br |
|
| 21 |
20
|
anassrs |
|
| 22 |
21
|
mpteq2dva |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
mpteq2dv |
|
| 25 |
7
|
adantr |
|
| 26 |
|
simprl |
|
| 27 |
|
simprr |
|
| 28 |
1 5
|
grpcl |
|
| 29 |
25 26 27 28
|
syl3anc |
|
| 30 |
8
|
adantr |
|
| 31 |
30
|
mptexd |
|
| 32 |
3 24 29 31
|
fvmptd3 |
|
| 33 |
17
|
adantr |
|
| 34 |
33 26
|
ffvelcdmd |
|
| 35 |
33 27
|
ffvelcdmd |
|
| 36 |
2 4 6
|
symgov |
|
| 37 |
34 35 36
|
syl2anc |
|
| 38 |
1
|
gaf |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
27
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
39 40 41
|
fovcdmd |
|
| 43 |
|
oveq1 |
|
| 44 |
43
|
mpteq2dv |
|
| 45 |
30
|
mptexd |
|
| 46 |
3 44 27 45
|
fvmptd3 |
|
| 47 |
|
oveq1 |
|
| 48 |
47
|
mpteq2dv |
|
| 49 |
30
|
mptexd |
|
| 50 |
3 48 26 49
|
fvmptd3 |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
cbvmptv |
|
| 53 |
50 52
|
eqtrdi |
|
| 54 |
|
oveq2 |
|
| 55 |
42 46 53 54
|
fmptco |
|
| 56 |
37 55
|
eqtrd |
|
| 57 |
22 32 56
|
3eqtr4d |
|
| 58 |
1 4 5 6 7 10 17 57
|
isghmd |
|