Metamath Proof Explorer


Theorem gagrp

Description: The left argument of a group action is a group. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion gagrp ˙GGrpActYGGrp

Proof

Step Hyp Ref Expression
1 eqid BaseG=BaseG
2 eqid +G=+G
3 eqid 0G=0G
4 1 2 3 isga ˙GGrpActYGGrpYV˙:BaseG×YYxY0G˙x=xyBaseGzBaseGy+Gz˙x=y˙z˙x
5 4 simplbi ˙GGrpActYGGrpYV
6 5 simpld ˙GGrpActYGGrp