Step |
Hyp |
Ref |
Expression |
1 |
|
isga.1 |
|
2 |
|
isga.2 |
|
3 |
|
isga.3 |
|
4 |
|
df-ga |
|
5 |
4
|
elmpocl |
|
6 |
|
fvexd |
|
7 |
|
simplr |
|
8 |
|
id |
|
9 |
|
simpl |
|
10 |
9
|
fveq2d |
|
11 |
10 1
|
eqtr4di |
|
12 |
8 11
|
sylan9eqr |
|
13 |
12 7
|
xpeq12d |
|
14 |
7 13
|
oveq12d |
|
15 |
|
simpll |
|
16 |
15
|
fveq2d |
|
17 |
16 3
|
eqtr4di |
|
18 |
17
|
oveq1d |
|
19 |
18
|
eqeq1d |
|
20 |
15
|
fveq2d |
|
21 |
20 2
|
eqtr4di |
|
22 |
21
|
oveqd |
|
23 |
22
|
oveq1d |
|
24 |
23
|
eqeq1d |
|
25 |
12 24
|
raleqbidv |
|
26 |
12 25
|
raleqbidv |
|
27 |
19 26
|
anbi12d |
|
28 |
7 27
|
raleqbidv |
|
29 |
14 28
|
rabeqbidv |
|
30 |
6 29
|
csbied |
|
31 |
|
ovex |
|
32 |
31
|
rabex |
|
33 |
30 4 32
|
ovmpoa |
|
34 |
33
|
eleq2d |
|
35 |
|
oveq |
|
36 |
35
|
eqeq1d |
|
37 |
|
oveq |
|
38 |
|
oveq |
|
39 |
|
oveq |
|
40 |
39
|
oveq2d |
|
41 |
38 40
|
eqtrd |
|
42 |
37 41
|
eqeq12d |
|
43 |
42
|
2ralbidv |
|
44 |
36 43
|
anbi12d |
|
45 |
44
|
ralbidv |
|
46 |
45
|
elrab |
|
47 |
34 46
|
bitrdi |
|
48 |
|
simpr |
|
49 |
1
|
fvexi |
|
50 |
|
xpexg |
|
51 |
49 48 50
|
sylancr |
|
52 |
48 51
|
elmapd |
|
53 |
52
|
anbi1d |
|
54 |
47 53
|
bitrd |
|
55 |
5 54
|
biadanii |
|