Metamath Proof Explorer


Definition df-ga

Description: Define the class of all group actions. A group G acts on a set S if a permutation on S is associated with every element of G in such a way that the identity permutation on S is associated with the neutral element of G , and the composition of the permutations associated with two elements of G is identical with the permutation associated with the composition of these two elements (in the same order) in the group G . (Contributed by Jeff Hankins, 10-Aug-2009)

Ref Expression
Assertion df-ga GrpAct=gGrp,sVBaseg/bmsb×s|xs0gmx=xybzby+gzmx=ymzmx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cga classGrpAct
1 vg setvarg
2 cgrp classGrp
3 vs setvars
4 cvv classV
5 cbs classBase
6 1 cv setvarg
7 6 5 cfv classBaseg
8 vb setvarb
9 vm setvarm
10 3 cv setvars
11 cmap class𝑚
12 8 cv setvarb
13 12 10 cxp classb×s
14 10 13 11 co classsb×s
15 vx setvarx
16 c0g class0𝑔
17 6 16 cfv class0g
18 9 cv setvarm
19 15 cv setvarx
20 17 19 18 co class0gmx
21 20 19 wceq wff0gmx=x
22 vy setvary
23 vz setvarz
24 22 cv setvary
25 cplusg class+𝑔
26 6 25 cfv class+g
27 23 cv setvarz
28 24 27 26 co classy+gz
29 28 19 18 co classy+gzmx
30 27 19 18 co classzmx
31 24 30 18 co classymzmx
32 29 31 wceq wffy+gzmx=ymzmx
33 32 23 12 wral wffzby+gzmx=ymzmx
34 33 22 12 wral wffybzby+gzmx=ymzmx
35 21 34 wa wff0gmx=xybzby+gzmx=ymzmx
36 35 15 10 wral wffxs0gmx=xybzby+gzmx=ymzmx
37 36 9 14 crab classmsb×s|xs0gmx=xybzby+gzmx=ymzmx
38 8 7 37 csb classBaseg/bmsb×s|xs0gmx=xybzby+gzmx=ymzmx
39 1 3 2 4 38 cmpo classgGrp,sVBaseg/bmsb×s|xs0gmx=xybzby+gzmx=ymzmx
40 0 39 wceq wffGrpAct=gGrp,sVBaseg/bmsb×s|xs0gmx=xybzby+gzmx=ymzmx