Description: The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gapm.1 | |
|
gapm.2 | |
||
Assertion | gapm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gapm.1 | |
|
2 | gapm.2 | |
|
3 | 1 | gaf | |
4 | 3 | ad2antrr | |
5 | simplr | |
|
6 | simpr | |
|
7 | 4 5 6 | fovcdmd | |
8 | 3 | ad2antrr | |
9 | gagrp | |
|
10 | 9 | ad2antrr | |
11 | simplr | |
|
12 | eqid | |
|
13 | 1 12 | grpinvcl | |
14 | 10 11 13 | syl2anc | |
15 | simpr | |
|
16 | 8 14 15 | fovcdmd | |
17 | simpll | |
|
18 | simplr | |
|
19 | simprl | |
|
20 | simprr | |
|
21 | 1 12 | gacan | |
22 | 17 18 19 20 21 | syl13anc | |
23 | 22 | bicomd | |
24 | eqcom | |
|
25 | eqcom | |
|
26 | 23 24 25 | 3bitr4g | |
27 | 2 7 16 26 | f1o2d | |