Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | gaorb.1 | |
|
Assertion | gaorb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gaorb.1 | |
|
2 | oveq2 | |
|
3 | eqeq12 | |
|
4 | 2 3 | sylan | |
5 | 4 | rexbidv | |
6 | oveq1 | |
|
7 | 6 | eqeq1d | |
8 | 7 | cbvrexvw | |
9 | 5 8 | bitrdi | |
10 | vex | |
|
11 | vex | |
|
12 | 10 11 | prss | |
13 | 12 | anbi1i | |
14 | 13 | opabbii | |
15 | 1 14 | eqtr4i | |
16 | 9 15 | brab2a | |
17 | df-3an | |
|
18 | 16 17 | bitr4i | |