Metamath Proof Explorer


Theorem gaorb

Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypothesis gaorb.1 ˙=xy|xyYgXg˙x=y
Assertion gaorb A˙BAYBYhXh˙A=B

Proof

Step Hyp Ref Expression
1 gaorb.1 ˙=xy|xyYgXg˙x=y
2 oveq2 x=Ag˙x=g˙A
3 eqeq12 g˙x=g˙Ay=Bg˙x=yg˙A=B
4 2 3 sylan x=Ay=Bg˙x=yg˙A=B
5 4 rexbidv x=Ay=BgXg˙x=ygXg˙A=B
6 oveq1 g=hg˙A=h˙A
7 6 eqeq1d g=hg˙A=Bh˙A=B
8 7 cbvrexvw gXg˙A=BhXh˙A=B
9 5 8 bitrdi x=Ay=BgXg˙x=yhXh˙A=B
10 vex xV
11 vex yV
12 10 11 prss xYyYxyY
13 12 anbi1i xYyYgXg˙x=yxyYgXg˙x=y
14 13 opabbii xy|xYyYgXg˙x=y=xy|xyYgXg˙x=y
15 1 14 eqtr4i ˙=xy|xYyYgXg˙x=y
16 9 15 brab2a A˙BAYBYhXh˙A=B
17 df-3an AYBYhXh˙A=BAYBYhXh˙A=B
18 16 17 bitr4i A˙BAYBYhXh˙A=B