| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gaorb.1 |
|
| 2 |
|
gaorber.2 |
|
| 3 |
1
|
relopabiv |
|
| 4 |
3
|
a1i |
|
| 5 |
|
simpr |
|
| 6 |
1
|
gaorb |
|
| 7 |
5 6
|
sylib |
|
| 8 |
7
|
simp2d |
|
| 9 |
7
|
simp1d |
|
| 10 |
7
|
simp3d |
|
| 11 |
|
simpll |
|
| 12 |
|
simpr |
|
| 13 |
9
|
adantr |
|
| 14 |
8
|
adantr |
|
| 15 |
|
eqid |
|
| 16 |
2 15
|
gacan |
|
| 17 |
11 12 13 14 16
|
syl13anc |
|
| 18 |
|
gagrp |
|
| 19 |
18
|
adantr |
|
| 20 |
2 15
|
grpinvcl |
|
| 21 |
19 20
|
sylan |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
eqeq1d |
|
| 24 |
23
|
rspcev |
|
| 25 |
24
|
ex |
|
| 26 |
21 25
|
syl |
|
| 27 |
17 26
|
sylbid |
|
| 28 |
27
|
rexlimdva |
|
| 29 |
10 28
|
mpd |
|
| 30 |
1
|
gaorb |
|
| 31 |
8 9 29 30
|
syl3anbrc |
|
| 32 |
9
|
adantrr |
|
| 33 |
|
simprr |
|
| 34 |
1
|
gaorb |
|
| 35 |
33 34
|
sylib |
|
| 36 |
35
|
simp2d |
|
| 37 |
10
|
adantrr |
|
| 38 |
35
|
simp3d |
|
| 39 |
|
reeanv |
|
| 40 |
18
|
ad2antrr |
|
| 41 |
|
simprlr |
|
| 42 |
|
simprll |
|
| 43 |
|
eqid |
|
| 44 |
2 43
|
grpcl |
|
| 45 |
40 41 42 44
|
syl3anc |
|
| 46 |
|
simpll |
|
| 47 |
32
|
adantr |
|
| 48 |
2 43
|
gaass |
|
| 49 |
46 41 42 47 48
|
syl13anc |
|
| 50 |
|
simprrl |
|
| 51 |
50
|
oveq2d |
|
| 52 |
|
simprrr |
|
| 53 |
49 51 52
|
3eqtrd |
|
| 54 |
|
oveq1 |
|
| 55 |
54
|
eqeq1d |
|
| 56 |
55
|
rspcev |
|
| 57 |
45 53 56
|
syl2anc |
|
| 58 |
57
|
expr |
|
| 59 |
58
|
rexlimdvva |
|
| 60 |
39 59
|
biimtrrid |
|
| 61 |
37 38 60
|
mp2and |
|
| 62 |
1
|
gaorb |
|
| 63 |
32 36 61 62
|
syl3anbrc |
|
| 64 |
18
|
adantr |
|
| 65 |
|
eqid |
|
| 66 |
2 65
|
grpidcl |
|
| 67 |
64 66
|
syl |
|
| 68 |
65
|
gagrpid |
|
| 69 |
|
oveq1 |
|
| 70 |
69
|
eqeq1d |
|
| 71 |
70
|
rspcev |
|
| 72 |
67 68 71
|
syl2anc |
|
| 73 |
72
|
ex |
|
| 74 |
73
|
pm4.71rd |
|
| 75 |
|
df-3an |
|
| 76 |
|
anidm |
|
| 77 |
76
|
anbi2ci |
|
| 78 |
75 77
|
bitri |
|
| 79 |
74 78
|
bitr4di |
|
| 80 |
1
|
gaorb |
|
| 81 |
79 80
|
bitr4di |
|
| 82 |
4 31 63 81
|
iserd |
|