Metamath Proof Explorer


Theorem gaorber

Description: The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses gaorb.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
gaorber.2 𝑋 = ( Base ‘ 𝐺 )
Assertion gaorber ( ∈ ( 𝐺 GrpAct 𝑌 ) → Er 𝑌 )

Proof

Step Hyp Ref Expression
1 gaorb.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔𝑋 ( 𝑔 𝑥 ) = 𝑦 ) }
2 gaorber.2 𝑋 = ( Base ‘ 𝐺 )
3 1 relopabiv Rel
4 3 a1i ( ∈ ( 𝐺 GrpAct 𝑌 ) → Rel )
5 simpr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → 𝑢 𝑣 )
6 1 gaorb ( 𝑢 𝑣 ↔ ( 𝑢𝑌𝑣𝑌 ∧ ∃ 𝑋 ( 𝑢 ) = 𝑣 ) )
7 5 6 sylib ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → ( 𝑢𝑌𝑣𝑌 ∧ ∃ 𝑋 ( 𝑢 ) = 𝑣 ) )
8 7 simp2d ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → 𝑣𝑌 )
9 7 simp1d ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → 𝑢𝑌 )
10 7 simp3d ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → ∃ 𝑋 ( 𝑢 ) = 𝑣 )
11 simpll ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → ∈ ( 𝐺 GrpAct 𝑌 ) )
12 simpr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → 𝑋 )
13 9 adantr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → 𝑢𝑌 )
14 8 adantr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → 𝑣𝑌 )
15 eqid ( invg𝐺 ) = ( invg𝐺 )
16 2 15 gacan ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑋𝑢𝑌𝑣𝑌 ) ) → ( ( 𝑢 ) = 𝑣 ↔ ( ( ( invg𝐺 ) ‘ ) 𝑣 ) = 𝑢 ) )
17 11 12 13 14 16 syl13anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → ( ( 𝑢 ) = 𝑣 ↔ ( ( ( invg𝐺 ) ‘ ) 𝑣 ) = 𝑢 ) )
18 gagrp ( ∈ ( 𝐺 GrpAct 𝑌 ) → 𝐺 ∈ Grp )
19 18 adantr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → 𝐺 ∈ Grp )
20 2 15 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋 ) → ( ( invg𝐺 ) ‘ ) ∈ 𝑋 )
21 19 20 sylan ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → ( ( invg𝐺 ) ‘ ) ∈ 𝑋 )
22 oveq1 ( 𝑘 = ( ( invg𝐺 ) ‘ ) → ( 𝑘 𝑣 ) = ( ( ( invg𝐺 ) ‘ ) 𝑣 ) )
23 22 eqeq1d ( 𝑘 = ( ( invg𝐺 ) ‘ ) → ( ( 𝑘 𝑣 ) = 𝑢 ↔ ( ( ( invg𝐺 ) ‘ ) 𝑣 ) = 𝑢 ) )
24 23 rspcev ( ( ( ( invg𝐺 ) ‘ ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ ) 𝑣 ) = 𝑢 ) → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 )
25 24 ex ( ( ( invg𝐺 ) ‘ ) ∈ 𝑋 → ( ( ( ( invg𝐺 ) ‘ ) 𝑣 ) = 𝑢 → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 ) )
26 21 25 syl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → ( ( ( ( invg𝐺 ) ‘ ) 𝑣 ) = 𝑢 → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 ) )
27 17 26 sylbid ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) ∧ 𝑋 ) → ( ( 𝑢 ) = 𝑣 → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 ) )
28 27 rexlimdva ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → ( ∃ 𝑋 ( 𝑢 ) = 𝑣 → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 ) )
29 10 28 mpd ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 )
30 1 gaorb ( 𝑣 𝑢 ↔ ( 𝑣𝑌𝑢𝑌 ∧ ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑢 ) )
31 8 9 29 30 syl3anbrc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢 𝑣 ) → 𝑣 𝑢 )
32 9 adantrr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → 𝑢𝑌 )
33 simprr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → 𝑣 𝑤 )
34 1 gaorb ( 𝑣 𝑤 ↔ ( 𝑣𝑌𝑤𝑌 ∧ ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑤 ) )
35 33 34 sylib ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → ( 𝑣𝑌𝑤𝑌 ∧ ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑤 ) )
36 35 simp2d ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → 𝑤𝑌 )
37 10 adantrr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → ∃ 𝑋 ( 𝑢 ) = 𝑣 )
38 35 simp3d ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑤 )
39 reeanv ( ∃ 𝑋𝑘𝑋 ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ↔ ( ∃ 𝑋 ( 𝑢 ) = 𝑣 ∧ ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑤 ) )
40 18 ad2antrr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → 𝐺 ∈ Grp )
41 simprlr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → 𝑘𝑋 )
42 simprll ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → 𝑋 )
43 eqid ( +g𝐺 ) = ( +g𝐺 )
44 2 43 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑘𝑋𝑋 ) → ( 𝑘 ( +g𝐺 ) ) ∈ 𝑋 )
45 40 41 42 44 syl3anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ( +g𝐺 ) ) ∈ 𝑋 )
46 simpll ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ∈ ( 𝐺 GrpAct 𝑌 ) )
47 32 adantr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → 𝑢𝑌 )
48 2 43 gaass ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑘𝑋𝑋𝑢𝑌 ) ) → ( ( 𝑘 ( +g𝐺 ) ) 𝑢 ) = ( 𝑘 ( 𝑢 ) ) )
49 46 41 42 47 48 syl13anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ( ( 𝑘 ( +g𝐺 ) ) 𝑢 ) = ( 𝑘 ( 𝑢 ) ) )
50 simprrl ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ( 𝑢 ) = 𝑣 )
51 50 oveq2d ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 ( 𝑢 ) ) = ( 𝑘 𝑣 ) )
52 simprrr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ( 𝑘 𝑣 ) = 𝑤 )
53 49 51 52 3eqtrd ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ( ( 𝑘 ( +g𝐺 ) ) 𝑢 ) = 𝑤 )
54 oveq1 ( 𝑓 = ( 𝑘 ( +g𝐺 ) ) → ( 𝑓 𝑢 ) = ( ( 𝑘 ( +g𝐺 ) ) 𝑢 ) )
55 54 eqeq1d ( 𝑓 = ( 𝑘 ( +g𝐺 ) ) → ( ( 𝑓 𝑢 ) = 𝑤 ↔ ( ( 𝑘 ( +g𝐺 ) ) 𝑢 ) = 𝑤 ) )
56 55 rspcev ( ( ( 𝑘 ( +g𝐺 ) ) ∈ 𝑋 ∧ ( ( 𝑘 ( +g𝐺 ) ) 𝑢 ) = 𝑤 ) → ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 )
57 45 53 56 syl2anc ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( ( 𝑋𝑘𝑋 ) ∧ ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) ) ) → ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 )
58 57 expr ( ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) ∧ ( 𝑋𝑘𝑋 ) ) → ( ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) → ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 ) )
59 58 rexlimdvva ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → ( ∃ 𝑋𝑘𝑋 ( ( 𝑢 ) = 𝑣 ∧ ( 𝑘 𝑣 ) = 𝑤 ) → ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 ) )
60 39 59 syl5bir ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → ( ( ∃ 𝑋 ( 𝑢 ) = 𝑣 ∧ ∃ 𝑘𝑋 ( 𝑘 𝑣 ) = 𝑤 ) → ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 ) )
61 37 38 60 mp2and ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 )
62 1 gaorb ( 𝑢 𝑤 ↔ ( 𝑢𝑌𝑤𝑌 ∧ ∃ 𝑓𝑋 ( 𝑓 𝑢 ) = 𝑤 ) )
63 32 36 61 62 syl3anbrc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑢 𝑣𝑣 𝑤 ) ) → 𝑢 𝑤 )
64 18 adantr ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢𝑌 ) → 𝐺 ∈ Grp )
65 eqid ( 0g𝐺 ) = ( 0g𝐺 )
66 2 65 grpidcl ( 𝐺 ∈ Grp → ( 0g𝐺 ) ∈ 𝑋 )
67 64 66 syl ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢𝑌 ) → ( 0g𝐺 ) ∈ 𝑋 )
68 65 gagrpid ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢𝑌 ) → ( ( 0g𝐺 ) 𝑢 ) = 𝑢 )
69 oveq1 ( = ( 0g𝐺 ) → ( 𝑢 ) = ( ( 0g𝐺 ) 𝑢 ) )
70 69 eqeq1d ( = ( 0g𝐺 ) → ( ( 𝑢 ) = 𝑢 ↔ ( ( 0g𝐺 ) 𝑢 ) = 𝑢 ) )
71 70 rspcev ( ( ( 0g𝐺 ) ∈ 𝑋 ∧ ( ( 0g𝐺 ) 𝑢 ) = 𝑢 ) → ∃ 𝑋 ( 𝑢 ) = 𝑢 )
72 67 68 71 syl2anc ( ( ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑢𝑌 ) → ∃ 𝑋 ( 𝑢 ) = 𝑢 )
73 72 ex ( ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢𝑌 → ∃ 𝑋 ( 𝑢 ) = 𝑢 ) )
74 73 pm4.71rd ( ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢𝑌 ↔ ( ∃ 𝑋 ( 𝑢 ) = 𝑢𝑢𝑌 ) ) )
75 df-3an ( ( 𝑢𝑌𝑢𝑌 ∧ ∃ 𝑋 ( 𝑢 ) = 𝑢 ) ↔ ( ( 𝑢𝑌𝑢𝑌 ) ∧ ∃ 𝑋 ( 𝑢 ) = 𝑢 ) )
76 anidm ( ( 𝑢𝑌𝑢𝑌 ) ↔ 𝑢𝑌 )
77 76 anbi2ci ( ( ( 𝑢𝑌𝑢𝑌 ) ∧ ∃ 𝑋 ( 𝑢 ) = 𝑢 ) ↔ ( ∃ 𝑋 ( 𝑢 ) = 𝑢𝑢𝑌 ) )
78 75 77 bitri ( ( 𝑢𝑌𝑢𝑌 ∧ ∃ 𝑋 ( 𝑢 ) = 𝑢 ) ↔ ( ∃ 𝑋 ( 𝑢 ) = 𝑢𝑢𝑌 ) )
79 74 78 bitr4di ( ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢𝑌 ↔ ( 𝑢𝑌𝑢𝑌 ∧ ∃ 𝑋 ( 𝑢 ) = 𝑢 ) ) )
80 1 gaorb ( 𝑢 𝑢 ↔ ( 𝑢𝑌𝑢𝑌 ∧ ∃ 𝑋 ( 𝑢 ) = 𝑢 ) )
81 79 80 bitr4di ( ∈ ( 𝐺 GrpAct 𝑌 ) → ( 𝑢𝑌𝑢 𝑢 ) )
82 4 31 63 81 iserd ( ∈ ( 𝐺 GrpAct 𝑌 ) → Er 𝑌 )