| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gaorb.1 |
|- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
| 2 |
|
gaorber.2 |
|- X = ( Base ` G ) |
| 3 |
1
|
relopabiv |
|- Rel .~ |
| 4 |
3
|
a1i |
|- ( .(+) e. ( G GrpAct Y ) -> Rel .~ ) |
| 5 |
|
simpr |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> u .~ v ) |
| 6 |
1
|
gaorb |
|- ( u .~ v <-> ( u e. Y /\ v e. Y /\ E. h e. X ( h .(+) u ) = v ) ) |
| 7 |
5 6
|
sylib |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> ( u e. Y /\ v e. Y /\ E. h e. X ( h .(+) u ) = v ) ) |
| 8 |
7
|
simp2d |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> v e. Y ) |
| 9 |
7
|
simp1d |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> u e. Y ) |
| 10 |
7
|
simp3d |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> E. h e. X ( h .(+) u ) = v ) |
| 11 |
|
simpll |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> .(+) e. ( G GrpAct Y ) ) |
| 12 |
|
simpr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> h e. X ) |
| 13 |
9
|
adantr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> u e. Y ) |
| 14 |
8
|
adantr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> v e. Y ) |
| 15 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 16 |
2 15
|
gacan |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( h e. X /\ u e. Y /\ v e. Y ) ) -> ( ( h .(+) u ) = v <-> ( ( ( invg ` G ) ` h ) .(+) v ) = u ) ) |
| 17 |
11 12 13 14 16
|
syl13anc |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( h .(+) u ) = v <-> ( ( ( invg ` G ) ` h ) .(+) v ) = u ) ) |
| 18 |
|
gagrp |
|- ( .(+) e. ( G GrpAct Y ) -> G e. Grp ) |
| 19 |
18
|
adantr |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> G e. Grp ) |
| 20 |
2 15
|
grpinvcl |
|- ( ( G e. Grp /\ h e. X ) -> ( ( invg ` G ) ` h ) e. X ) |
| 21 |
19 20
|
sylan |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( invg ` G ) ` h ) e. X ) |
| 22 |
|
oveq1 |
|- ( k = ( ( invg ` G ) ` h ) -> ( k .(+) v ) = ( ( ( invg ` G ) ` h ) .(+) v ) ) |
| 23 |
22
|
eqeq1d |
|- ( k = ( ( invg ` G ) ` h ) -> ( ( k .(+) v ) = u <-> ( ( ( invg ` G ) ` h ) .(+) v ) = u ) ) |
| 24 |
23
|
rspcev |
|- ( ( ( ( invg ` G ) ` h ) e. X /\ ( ( ( invg ` G ) ` h ) .(+) v ) = u ) -> E. k e. X ( k .(+) v ) = u ) |
| 25 |
24
|
ex |
|- ( ( ( invg ` G ) ` h ) e. X -> ( ( ( ( invg ` G ) ` h ) .(+) v ) = u -> E. k e. X ( k .(+) v ) = u ) ) |
| 26 |
21 25
|
syl |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( ( ( invg ` G ) ` h ) .(+) v ) = u -> E. k e. X ( k .(+) v ) = u ) ) |
| 27 |
17 26
|
sylbid |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) /\ h e. X ) -> ( ( h .(+) u ) = v -> E. k e. X ( k .(+) v ) = u ) ) |
| 28 |
27
|
rexlimdva |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> ( E. h e. X ( h .(+) u ) = v -> E. k e. X ( k .(+) v ) = u ) ) |
| 29 |
10 28
|
mpd |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> E. k e. X ( k .(+) v ) = u ) |
| 30 |
1
|
gaorb |
|- ( v .~ u <-> ( v e. Y /\ u e. Y /\ E. k e. X ( k .(+) v ) = u ) ) |
| 31 |
8 9 29 30
|
syl3anbrc |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u .~ v ) -> v .~ u ) |
| 32 |
9
|
adantrr |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> u e. Y ) |
| 33 |
|
simprr |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> v .~ w ) |
| 34 |
1
|
gaorb |
|- ( v .~ w <-> ( v e. Y /\ w e. Y /\ E. k e. X ( k .(+) v ) = w ) ) |
| 35 |
33 34
|
sylib |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> ( v e. Y /\ w e. Y /\ E. k e. X ( k .(+) v ) = w ) ) |
| 36 |
35
|
simp2d |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> w e. Y ) |
| 37 |
10
|
adantrr |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> E. h e. X ( h .(+) u ) = v ) |
| 38 |
35
|
simp3d |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> E. k e. X ( k .(+) v ) = w ) |
| 39 |
|
reeanv |
|- ( E. h e. X E. k e. X ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) <-> ( E. h e. X ( h .(+) u ) = v /\ E. k e. X ( k .(+) v ) = w ) ) |
| 40 |
18
|
ad2antrr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> G e. Grp ) |
| 41 |
|
simprlr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> k e. X ) |
| 42 |
|
simprll |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> h e. X ) |
| 43 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 44 |
2 43
|
grpcl |
|- ( ( G e. Grp /\ k e. X /\ h e. X ) -> ( k ( +g ` G ) h ) e. X ) |
| 45 |
40 41 42 44
|
syl3anc |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( k ( +g ` G ) h ) e. X ) |
| 46 |
|
simpll |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> .(+) e. ( G GrpAct Y ) ) |
| 47 |
32
|
adantr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> u e. Y ) |
| 48 |
2 43
|
gaass |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( k e. X /\ h e. X /\ u e. Y ) ) -> ( ( k ( +g ` G ) h ) .(+) u ) = ( k .(+) ( h .(+) u ) ) ) |
| 49 |
46 41 42 47 48
|
syl13anc |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( ( k ( +g ` G ) h ) .(+) u ) = ( k .(+) ( h .(+) u ) ) ) |
| 50 |
|
simprrl |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( h .(+) u ) = v ) |
| 51 |
50
|
oveq2d |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( k .(+) ( h .(+) u ) ) = ( k .(+) v ) ) |
| 52 |
|
simprrr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( k .(+) v ) = w ) |
| 53 |
49 51 52
|
3eqtrd |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> ( ( k ( +g ` G ) h ) .(+) u ) = w ) |
| 54 |
|
oveq1 |
|- ( f = ( k ( +g ` G ) h ) -> ( f .(+) u ) = ( ( k ( +g ` G ) h ) .(+) u ) ) |
| 55 |
54
|
eqeq1d |
|- ( f = ( k ( +g ` G ) h ) -> ( ( f .(+) u ) = w <-> ( ( k ( +g ` G ) h ) .(+) u ) = w ) ) |
| 56 |
55
|
rspcev |
|- ( ( ( k ( +g ` G ) h ) e. X /\ ( ( k ( +g ` G ) h ) .(+) u ) = w ) -> E. f e. X ( f .(+) u ) = w ) |
| 57 |
45 53 56
|
syl2anc |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( ( h e. X /\ k e. X ) /\ ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) ) ) -> E. f e. X ( f .(+) u ) = w ) |
| 58 |
57
|
expr |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) /\ ( h e. X /\ k e. X ) ) -> ( ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) -> E. f e. X ( f .(+) u ) = w ) ) |
| 59 |
58
|
rexlimdvva |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> ( E. h e. X E. k e. X ( ( h .(+) u ) = v /\ ( k .(+) v ) = w ) -> E. f e. X ( f .(+) u ) = w ) ) |
| 60 |
39 59
|
biimtrrid |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> ( ( E. h e. X ( h .(+) u ) = v /\ E. k e. X ( k .(+) v ) = w ) -> E. f e. X ( f .(+) u ) = w ) ) |
| 61 |
37 38 60
|
mp2and |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> E. f e. X ( f .(+) u ) = w ) |
| 62 |
1
|
gaorb |
|- ( u .~ w <-> ( u e. Y /\ w e. Y /\ E. f e. X ( f .(+) u ) = w ) ) |
| 63 |
32 36 61 62
|
syl3anbrc |
|- ( ( .(+) e. ( G GrpAct Y ) /\ ( u .~ v /\ v .~ w ) ) -> u .~ w ) |
| 64 |
18
|
adantr |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> G e. Grp ) |
| 65 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 66 |
2 65
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 67 |
64 66
|
syl |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> ( 0g ` G ) e. X ) |
| 68 |
65
|
gagrpid |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> ( ( 0g ` G ) .(+) u ) = u ) |
| 69 |
|
oveq1 |
|- ( h = ( 0g ` G ) -> ( h .(+) u ) = ( ( 0g ` G ) .(+) u ) ) |
| 70 |
69
|
eqeq1d |
|- ( h = ( 0g ` G ) -> ( ( h .(+) u ) = u <-> ( ( 0g ` G ) .(+) u ) = u ) ) |
| 71 |
70
|
rspcev |
|- ( ( ( 0g ` G ) e. X /\ ( ( 0g ` G ) .(+) u ) = u ) -> E. h e. X ( h .(+) u ) = u ) |
| 72 |
67 68 71
|
syl2anc |
|- ( ( .(+) e. ( G GrpAct Y ) /\ u e. Y ) -> E. h e. X ( h .(+) u ) = u ) |
| 73 |
72
|
ex |
|- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y -> E. h e. X ( h .(+) u ) = u ) ) |
| 74 |
73
|
pm4.71rd |
|- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y <-> ( E. h e. X ( h .(+) u ) = u /\ u e. Y ) ) ) |
| 75 |
|
df-3an |
|- ( ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) <-> ( ( u e. Y /\ u e. Y ) /\ E. h e. X ( h .(+) u ) = u ) ) |
| 76 |
|
anidm |
|- ( ( u e. Y /\ u e. Y ) <-> u e. Y ) |
| 77 |
76
|
anbi2ci |
|- ( ( ( u e. Y /\ u e. Y ) /\ E. h e. X ( h .(+) u ) = u ) <-> ( E. h e. X ( h .(+) u ) = u /\ u e. Y ) ) |
| 78 |
75 77
|
bitri |
|- ( ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) <-> ( E. h e. X ( h .(+) u ) = u /\ u e. Y ) ) |
| 79 |
74 78
|
bitr4di |
|- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y <-> ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) ) ) |
| 80 |
1
|
gaorb |
|- ( u .~ u <-> ( u e. Y /\ u e. Y /\ E. h e. X ( h .(+) u ) = u ) ) |
| 81 |
79 80
|
bitr4di |
|- ( .(+) e. ( G GrpAct Y ) -> ( u e. Y <-> u .~ u ) ) |
| 82 |
4 31 63 81
|
iserd |
|- ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) |