Metamath Proof Explorer


Theorem symginv

Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses symggrp.1 𝐺 = ( SymGrp ‘ 𝐴 )
symginv.2 𝐵 = ( Base ‘ 𝐺 )
symginv.3 𝑁 = ( invg𝐺 )
Assertion symginv ( 𝐹𝐵 → ( 𝑁𝐹 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 symggrp.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symginv.2 𝐵 = ( Base ‘ 𝐺 )
3 symginv.3 𝑁 = ( invg𝐺 )
4 1 2 elsymgbas2 ( 𝐹𝐵 → ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 ) )
5 4 ibi ( 𝐹𝐵𝐹 : 𝐴1-1-onto𝐴 )
6 f1ocnv ( 𝐹 : 𝐴1-1-onto𝐴 𝐹 : 𝐴1-1-onto𝐴 )
7 5 6 syl ( 𝐹𝐵 𝐹 : 𝐴1-1-onto𝐴 )
8 cnvexg ( 𝐹𝐵 𝐹 ∈ V )
9 1 2 elsymgbas2 ( 𝐹 ∈ V → ( 𝐹𝐵 𝐹 : 𝐴1-1-onto𝐴 ) )
10 8 9 syl ( 𝐹𝐵 → ( 𝐹𝐵 𝐹 : 𝐴1-1-onto𝐴 ) )
11 7 10 mpbird ( 𝐹𝐵 𝐹𝐵 )
12 eqid ( +g𝐺 ) = ( +g𝐺 )
13 1 2 12 symgov ( ( 𝐹𝐵 𝐹𝐵 ) → ( 𝐹 ( +g𝐺 ) 𝐹 ) = ( 𝐹 𝐹 ) )
14 11 13 mpdan ( 𝐹𝐵 → ( 𝐹 ( +g𝐺 ) 𝐹 ) = ( 𝐹 𝐹 ) )
15 f1ococnv2 ( 𝐹 : 𝐴1-1-onto𝐴 → ( 𝐹 𝐹 ) = ( I ↾ 𝐴 ) )
16 5 15 syl ( 𝐹𝐵 → ( 𝐹 𝐹 ) = ( I ↾ 𝐴 ) )
17 1 2 elbasfv ( 𝐹𝐵𝐴 ∈ V )
18 1 symgid ( 𝐴 ∈ V → ( I ↾ 𝐴 ) = ( 0g𝐺 ) )
19 17 18 syl ( 𝐹𝐵 → ( I ↾ 𝐴 ) = ( 0g𝐺 ) )
20 14 16 19 3eqtrd ( 𝐹𝐵 → ( 𝐹 ( +g𝐺 ) 𝐹 ) = ( 0g𝐺 ) )
21 1 symggrp ( 𝐴 ∈ V → 𝐺 ∈ Grp )
22 17 21 syl ( 𝐹𝐵𝐺 ∈ Grp )
23 id ( 𝐹𝐵𝐹𝐵 )
24 eqid ( 0g𝐺 ) = ( 0g𝐺 )
25 2 12 24 3 grpinvid1 ( ( 𝐺 ∈ Grp ∧ 𝐹𝐵 𝐹𝐵 ) → ( ( 𝑁𝐹 ) = 𝐹 ↔ ( 𝐹 ( +g𝐺 ) 𝐹 ) = ( 0g𝐺 ) ) )
26 22 23 11 25 syl3anc ( 𝐹𝐵 → ( ( 𝑁𝐹 ) = 𝐹 ↔ ( 𝐹 ( +g𝐺 ) 𝐹 ) = ( 0g𝐺 ) ) )
27 20 26 mpbird ( 𝐹𝐵 → ( 𝑁𝐹 ) = 𝐹 )