| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgtrinv.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 2 |  | symgtrinv.g |  |-  G = ( SymGrp ` D ) | 
						
							| 3 |  | symgtrinv.i |  |-  I = ( invg ` G ) | 
						
							| 4 | 2 | symggrp |  |-  ( D e. V -> G e. Grp ) | 
						
							| 5 |  | eqid |  |-  ( oppG ` G ) = ( oppG ` G ) | 
						
							| 6 | 5 3 | invoppggim |  |-  ( G e. Grp -> I e. ( G GrpIso ( oppG ` G ) ) ) | 
						
							| 7 |  | gimghm |  |-  ( I e. ( G GrpIso ( oppG ` G ) ) -> I e. ( G GrpHom ( oppG ` G ) ) ) | 
						
							| 8 |  | ghmmhm |  |-  ( I e. ( G GrpHom ( oppG ` G ) ) -> I e. ( G MndHom ( oppG ` G ) ) ) | 
						
							| 9 | 4 6 7 8 | 4syl |  |-  ( D e. V -> I e. ( G MndHom ( oppG ` G ) ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 11 | 1 2 10 | symgtrf |  |-  T C_ ( Base ` G ) | 
						
							| 12 |  | sswrd |  |-  ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  Word T C_ Word ( Base ` G ) | 
						
							| 14 | 13 | sseli |  |-  ( W e. Word T -> W e. Word ( Base ` G ) ) | 
						
							| 15 | 10 | gsumwmhm |  |-  ( ( I e. ( G MndHom ( oppG ` G ) ) /\ W e. Word ( Base ` G ) ) -> ( I ` ( G gsum W ) ) = ( ( oppG ` G ) gsum ( I o. W ) ) ) | 
						
							| 16 | 9 14 15 | syl2an |  |-  ( ( D e. V /\ W e. Word T ) -> ( I ` ( G gsum W ) ) = ( ( oppG ` G ) gsum ( I o. W ) ) ) | 
						
							| 17 | 10 3 | grpinvf |  |-  ( G e. Grp -> I : ( Base ` G ) --> ( Base ` G ) ) | 
						
							| 18 | 4 17 | syl |  |-  ( D e. V -> I : ( Base ` G ) --> ( Base ` G ) ) | 
						
							| 19 |  | wrdf |  |-  ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) | 
						
							| 20 | 19 | adantl |  |-  ( ( D e. V /\ W e. Word T ) -> W : ( 0 ..^ ( # ` W ) ) --> T ) | 
						
							| 21 |  | fss |  |-  ( ( W : ( 0 ..^ ( # ` W ) ) --> T /\ T C_ ( Base ` G ) ) -> W : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) | 
						
							| 22 | 20 11 21 | sylancl |  |-  ( ( D e. V /\ W e. Word T ) -> W : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) | 
						
							| 23 |  | fco |  |-  ( ( I : ( Base ` G ) --> ( Base ` G ) /\ W : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) -> ( I o. W ) : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) | 
						
							| 24 | 18 22 23 | syl2an2r |  |-  ( ( D e. V /\ W e. Word T ) -> ( I o. W ) : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) | 
						
							| 25 | 24 | ffnd |  |-  ( ( D e. V /\ W e. Word T ) -> ( I o. W ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 26 | 20 | ffnd |  |-  ( ( D e. V /\ W e. Word T ) -> W Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 27 |  | fvco2 |  |-  ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I o. W ) ` x ) = ( I ` ( W ` x ) ) ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I o. W ) ` x ) = ( I ` ( W ` x ) ) ) | 
						
							| 29 | 20 | ffvelcdmda |  |-  ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. T ) | 
						
							| 30 | 11 29 | sselid |  |-  ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. ( Base ` G ) ) | 
						
							| 31 | 2 10 3 | symginv |  |-  ( ( W ` x ) e. ( Base ` G ) -> ( I ` ( W ` x ) ) = `' ( W ` x ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( I ` ( W ` x ) ) = `' ( W ` x ) ) | 
						
							| 33 |  | eqid |  |-  ( pmTrsp ` D ) = ( pmTrsp ` D ) | 
						
							| 34 | 33 1 | pmtrfcnv |  |-  ( ( W ` x ) e. T -> `' ( W ` x ) = ( W ` x ) ) | 
						
							| 35 | 29 34 | syl |  |-  ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> `' ( W ` x ) = ( W ` x ) ) | 
						
							| 36 | 28 32 35 | 3eqtrd |  |-  ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I o. W ) ` x ) = ( W ` x ) ) | 
						
							| 37 | 25 26 36 | eqfnfvd |  |-  ( ( D e. V /\ W e. Word T ) -> ( I o. W ) = W ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( D e. V /\ W e. Word T ) -> ( ( oppG ` G ) gsum ( I o. W ) ) = ( ( oppG ` G ) gsum W ) ) | 
						
							| 39 | 4 | grpmndd |  |-  ( D e. V -> G e. Mnd ) | 
						
							| 40 | 10 5 | gsumwrev |  |-  ( ( G e. Mnd /\ W e. Word ( Base ` G ) ) -> ( ( oppG ` G ) gsum W ) = ( G gsum ( reverse ` W ) ) ) | 
						
							| 41 | 39 14 40 | syl2an |  |-  ( ( D e. V /\ W e. Word T ) -> ( ( oppG ` G ) gsum W ) = ( G gsum ( reverse ` W ) ) ) | 
						
							| 42 | 16 38 41 | 3eqtrd |  |-  ( ( D e. V /\ W e. Word T ) -> ( I ` ( G gsum W ) ) = ( G gsum ( reverse ` W ) ) ) |