Metamath Proof Explorer


Theorem expsub

Description: Exponent subtraction law for integer exponentiation. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expsub AA0MNAMN=AMAN

Proof

Step Hyp Ref Expression
1 znegcl NN
2 expaddz AA0MNAM+- N=AMAN
3 1 2 sylanr2 AA0MNAM+- N=AMAN
4 zcn MM
5 zcn NN
6 negsub MNM+- N=MN
7 4 5 6 syl2an MNM+- N=MN
8 7 adantl AA0MNM+- N=MN
9 8 oveq2d AA0MNAM+- N=AMN
10 expnegz AA0NAN=1AN
11 10 3expa AA0NAN=1AN
12 11 adantrl AA0MNAN=1AN
13 12 oveq2d AA0MNAMAN=AM1AN
14 expclz AA0MAM
15 14 3expa AA0MAM
16 15 adantrr AA0MNAM
17 expclz AA0NAN
18 17 3expa AA0NAN
19 18 adantrl AA0MNAN
20 expne0i AA0NAN0
21 20 3expa AA0NAN0
22 21 adantrl AA0MNAN0
23 16 19 22 divrecd AA0MNAMAN=AM1AN
24 13 23 eqtr4d AA0MNAMAN=AMAN
25 3 9 24 3eqtr3d AA0MNAMN=AMAN