| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0 |
|
| 2 |
|
expneg |
|
| 3 |
2
|
ex |
|
| 4 |
3
|
ad2antrr |
|
| 5 |
|
simpll |
|
| 6 |
|
simprl |
|
| 7 |
6
|
recnd |
|
| 8 |
|
simprr |
|
| 9 |
|
expneg2 |
|
| 10 |
5 7 8 9
|
syl3anc |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
expcl |
|
| 13 |
12
|
ad2ant2rl |
|
| 14 |
|
simplr |
|
| 15 |
8
|
nn0zd |
|
| 16 |
|
expne0i |
|
| 17 |
5 14 15 16
|
syl3anc |
|
| 18 |
13 17
|
recrecd |
|
| 19 |
11 18
|
eqtr2d |
|
| 20 |
19
|
expr |
|
| 21 |
4 20
|
jaod |
|
| 22 |
21
|
expimpd |
|
| 23 |
1 22
|
biimtrid |
|
| 24 |
23
|
3impia |
|