Metamath Proof Explorer


Theorem diveq1d

Description: Equality in terms of unit ratio. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
diveq1d.4 φAB=1
Assertion diveq1d φA=B

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 diveq1d.4 φAB=1
5 diveq1 ABB0AB=1A=B
6 1 2 3 5 syl3anc φAB=1A=B
7 4 6 mpbid φA=B