Metamath Proof Explorer


Theorem diveq1ad

Description: The quotient of two complex numbers is one iff they are equal. Deduction form of diveq1 . Generalization of diveq1d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion diveq1ad φAB=1A=B

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 diveq1 ABB0AB=1A=B
5 1 2 3 4 syl3anc φAB=1A=B