Metamath Proof Explorer


Theorem diveq0ad

Description: A fraction of complex numbers is zero iff its numerator is. Deduction form of diveq0 . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1 φA
divcld.2 φB
divcld.3 φB0
Assertion diveq0ad φAB=0A=0

Proof

Step Hyp Ref Expression
1 div1d.1 φA
2 divcld.2 φB
3 divcld.3 φB0
4 diveq0 ABB0AB=0A=0
5 1 2 3 4 syl3anc φAB=0A=0