Metamath Proof Explorer


Theorem diveq0

Description: A ratio is zero iff the numerator is zero. (Contributed by NM, 20-Apr-2006) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion diveq0 ABB0AB=0A=0

Proof

Step Hyp Ref Expression
1 simp1 ABB0A
2 0cnd ABB00
3 3simpc ABB0BB0
4 divmul2 A0BB0AB=0A=B0
5 1 2 3 4 syl3anc ABB0AB=0A=B0
6 simp2 ABB0B
7 6 mul01d ABB0B0=0
8 7 eqeq2d ABB0A=B0A=0
9 5 8 bitrd ABB0AB=0A=0