Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> A e. CC ) |
2 |
|
0cnd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> 0 e. CC ) |
3 |
|
3simpc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
4 |
|
divmul2 |
|- ( ( A e. CC /\ 0 e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( A / B ) = 0 <-> A = ( B x. 0 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 0 <-> A = ( B x. 0 ) ) ) |
6 |
|
simp2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> B e. CC ) |
7 |
6
|
mul01d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. 0 ) = 0 ) |
8 |
7
|
eqeq2d |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A = ( B x. 0 ) <-> A = 0 ) ) |
9 |
5 8
|
bitrd |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( ( A / B ) = 0 <-> A = 0 ) ) |