Metamath Proof Explorer


Theorem psgnval

Description: Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g G=SymGrpD
psgnval.t T=ranpmTrspD
psgnval.n N=pmSgnD
Assertion psgnval PdomNNP=ιs|wWordTP=Gws=1w

Proof

Step Hyp Ref Expression
1 psgnval.g G=SymGrpD
2 psgnval.t T=ranpmTrspD
3 psgnval.n N=pmSgnD
4 eqeq1 t=Pt=GwP=Gw
5 4 anbi1d t=Pt=Gws=1wP=Gws=1w
6 5 rexbidv t=PwWordTt=Gws=1wwWordTP=Gws=1w
7 6 iotabidv t=Pιs|wWordTt=Gws=1w=ιs|wWordTP=Gws=1w
8 eqid BaseG=BaseG
9 eqid xBaseG|domxIFin=xBaseG|domxIFin
10 1 8 9 3 psgnfn NFnxBaseG|domxIFin
11 10 fndmi domN=xBaseG|domxIFin
12 1 8 11 2 3 psgnfval N=tdomNιs|wWordTt=Gws=1w
13 iotaex ιs|wWordTP=Gws=1wV
14 7 12 13 fvmpt PdomNNP=ιs|wWordTP=Gws=1w