| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnval.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnval.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnval.n |  |-  N = ( pmSgn ` D ) | 
						
							| 4 |  | eqeq1 |  |-  ( t = P -> ( t = ( G gsum w ) <-> P = ( G gsum w ) ) ) | 
						
							| 5 | 4 | anbi1d |  |-  ( t = P -> ( ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 6 | 5 | rexbidv |  |-  ( t = P -> ( E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 7 | 6 | iotabidv |  |-  ( t = P -> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 8 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 9 |  | eqid |  |-  { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } | 
						
							| 10 | 1 8 9 3 | psgnfn |  |-  N Fn { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } | 
						
							| 11 | 10 | fndmi |  |-  dom N = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } | 
						
							| 12 | 1 8 11 2 3 | psgnfval |  |-  N = ( t e. dom N |-> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 13 |  | iotaex |  |-  ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. _V | 
						
							| 14 | 7 12 13 | fvmpt |  |-  ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |