| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnval.g |
|- G = ( SymGrp ` D ) |
| 2 |
|
psgnval.t |
|- T = ran ( pmTrsp ` D ) |
| 3 |
|
psgnval.n |
|- N = ( pmSgn ` D ) |
| 4 |
|
eqeq1 |
|- ( t = P -> ( t = ( G gsum w ) <-> P = ( G gsum w ) ) ) |
| 5 |
4
|
anbi1d |
|- ( t = P -> ( ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 6 |
5
|
rexbidv |
|- ( t = P -> ( E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 7 |
6
|
iotabidv |
|- ( t = P -> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 8 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 9 |
|
eqid |
|- { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
| 10 |
1 8 9 3
|
psgnfn |
|- N Fn { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
| 11 |
10
|
fndmi |
|- dom N = { x e. ( Base ` G ) | dom ( x \ _I ) e. Fin } |
| 12 |
1 8 11 2 3
|
psgnfval |
|- N = ( t e. dom N |-> ( iota s E. w e. Word T ( t = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 13 |
|
iotaex |
|- ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. _V |
| 14 |
7 12 13
|
fvmpt |
|- ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |