| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnval.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnval.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnval.n |  |-  N = ( pmSgn ` D ) | 
						
							| 4 | 1 2 3 | psgnval |  |-  ( P e. dom N -> ( N ` P ) = ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 5 | 1 2 3 | psgneu |  |-  ( P e. dom N -> E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 6 |  | iotacl |  |-  ( E! s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) -> ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } ) | 
						
							| 7 | 5 6 | syl |  |-  ( P e. dom N -> ( iota s E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } ) | 
						
							| 8 | 4 7 | eqeltrd |  |-  ( P e. dom N -> ( N ` P ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } ) | 
						
							| 9 |  | fvex |  |-  ( N ` P ) e. _V | 
						
							| 10 |  | eqeq1 |  |-  ( s = ( N ` P ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 11 | 10 | anbi2d |  |-  ( s = ( N ` P ) -> ( ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( s = ( N ` P ) -> ( E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 13 | 9 12 | elab |  |-  ( ( N ` P ) e. { s | E. w e. Word T ( P = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) } <-> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) | 
						
							| 14 | 8 13 | sylib |  |-  ( P e. dom N -> E. w e. Word T ( P = ( G gsum w ) /\ ( N ` P ) = ( -u 1 ^ ( # ` w ) ) ) ) |