Description: Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota ). If you have a bounded iota-based definition, riotacl2 may be useful.
(Contributed by Andrew Salmon, 1-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotacl | |- ( E! x ph -> ( iota x ph ) e. { x | ph } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 | |- ( E! x ph -> [. ( iota x ph ) / x ]. ph ) |
|
| 2 | df-sbc | |- ( [. ( iota x ph ) / x ]. ph <-> ( iota x ph ) e. { x | ph } ) |
|
| 3 | 1 2 | sylib | |- ( E! x ph -> ( iota x ph ) e. { x | ph } ) |