Description: Membership law for descriptions.
This can be useful for expanding an unbounded iota-based definition (see df-iota ). If you have a bounded iota-based definition, riotacl2 may be useful.
(Contributed by Andrew Salmon, 1-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iotacl | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ { 𝑥 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 | ⊢ ( ∃! 𝑥 𝜑 → [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ) | |
| 2 | df-sbc | ⊢ ( [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜑 ↔ ( ℩ 𝑥 𝜑 ) ∈ { 𝑥 ∣ 𝜑 } ) | |
| 3 | 1 2 | sylib | ⊢ ( ∃! 𝑥 𝜑 → ( ℩ 𝑥 𝜑 ) ∈ { 𝑥 ∣ 𝜑 } ) |