Metamath Proof Explorer


Theorem psgneldm

Description: Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgneldm.g G = SymGrp D
psgneldm.n N = pmSgn D
psgneldm.b B = Base G
Assertion psgneldm P dom N P B dom P I Fin

Proof

Step Hyp Ref Expression
1 psgneldm.g G = SymGrp D
2 psgneldm.n N = pmSgn D
3 psgneldm.b B = Base G
4 difeq1 p = P p I = P I
5 4 dmeqd p = P dom p I = dom P I
6 5 eleq1d p = P dom p I Fin dom P I Fin
7 eqid p B | dom p I Fin = p B | dom p I Fin
8 1 3 7 2 psgnfn N Fn p B | dom p I Fin
9 8 fndmi dom N = p B | dom p I Fin
10 6 9 elrab2 P dom N P B dom P I Fin