Metamath Proof Explorer


Theorem psgneldm

Description: Property of being a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgneldm.g G=SymGrpD
psgneldm.n N=pmSgnD
psgneldm.b B=BaseG
Assertion psgneldm PdomNPBdomPIFin

Proof

Step Hyp Ref Expression
1 psgneldm.g G=SymGrpD
2 psgneldm.n N=pmSgnD
3 psgneldm.b B=BaseG
4 difeq1 p=PpI=PI
5 4 dmeqd p=PdompI=domPI
6 5 eleq1d p=PdompIFindomPIFin
7 eqid pB|dompIFin=pB|dompIFin
8 1 3 7 2 psgnfn NFnpB|dompIFin
9 8 fndmi domN=pB|dompIFin
10 6 9 elrab2 PdomNPBdomPIFin