| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgneldm.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgneldm.n |  |-  N = ( pmSgn ` D ) | 
						
							| 3 |  | psgneldm.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | difeq1 |  |-  ( p = P -> ( p \ _I ) = ( P \ _I ) ) | 
						
							| 5 | 4 | dmeqd |  |-  ( p = P -> dom ( p \ _I ) = dom ( P \ _I ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( p = P -> ( dom ( p \ _I ) e. Fin <-> dom ( P \ _I ) e. Fin ) ) | 
						
							| 7 |  | eqid |  |-  { p e. B | dom ( p \ _I ) e. Fin } = { p e. B | dom ( p \ _I ) e. Fin } | 
						
							| 8 | 1 3 7 2 | psgnfn |  |-  N Fn { p e. B | dom ( p \ _I ) e. Fin } | 
						
							| 9 | 8 | fndmi |  |-  dom N = { p e. B | dom ( p \ _I ) e. Fin } | 
						
							| 10 | 6 9 | elrab2 |  |-  ( P e. dom N <-> ( P e. B /\ dom ( P \ _I ) e. Fin ) ) |