| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnfitr.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 2 |  | psgnfitr.p | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | psgnfitr.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝐵 )  →  𝑄  ∈  𝐵 ) | 
						
							| 5 | 1 2 | sygbasnfpfi | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝐵 )  →  dom  ( 𝑄  ∖   I  )  ∈  Fin ) | 
						
							| 6 |  | eqid | ⊢ ( pmSgn ‘ 𝑁 )  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 7 | 1 6 2 | psgneldm | ⊢ ( 𝑄  ∈  dom  ( pmSgn ‘ 𝑁 )  ↔  ( 𝑄  ∈  𝐵  ∧  dom  ( 𝑄  ∖   I  )  ∈  Fin ) ) | 
						
							| 8 | 4 5 7 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝐵 )  →  𝑄  ∈  dom  ( pmSgn ‘ 𝑁 ) ) | 
						
							| 9 | 1 3 6 | psgneu | ⊢ ( 𝑄  ∈  dom  ( pmSgn ‘ 𝑁 )  →  ∃! 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑄  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑄  ∈  𝐵 )  →  ∃! 𝑠 ∃ 𝑤  ∈  Word  𝑇 ( 𝑄  =  ( 𝐺  Σg  𝑤 )  ∧  𝑠  =  ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) |