| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 2 |  | eqid | ⊢ ( pmTrsp ‘ { 𝐴 } )  =  ( pmTrsp ‘ { 𝐴 } ) | 
						
							| 3 | 2 | pmtrfval | ⊢ ( { 𝐴 }  ∈  V  →  ( pmTrsp ‘ { 𝐴 } )  =  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ( pmTrsp ‘ { 𝐴 } )  =  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 6 | 5 | dmmpt | ⊢ dom  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  { 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ∣  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) )  ∈  V } | 
						
							| 7 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 8 |  | ensymb | ⊢ ( ∅  ≈  2o  ↔  2o  ≈  ∅ ) | 
						
							| 9 |  | en0 | ⊢ ( 2o  ≈  ∅  ↔  2o  =  ∅ ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ∅  ≈  2o  ↔  2o  =  ∅ ) | 
						
							| 11 | 7 10 | nemtbir | ⊢ ¬  ∅  ≈  2o | 
						
							| 12 |  | snnen2o | ⊢ ¬  { 𝐴 }  ≈  2o | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 |  | breq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ≈  2o  ↔  ∅  ≈  2o ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( 𝑦  =  ∅  →  ( ¬  𝑦  ≈  2o  ↔  ¬  ∅  ≈  2o ) ) | 
						
							| 16 |  | breq1 | ⊢ ( 𝑦  =  { 𝐴 }  →  ( 𝑦  ≈  2o  ↔  { 𝐴 }  ≈  2o ) ) | 
						
							| 17 | 16 | notbid | ⊢ ( 𝑦  =  { 𝐴 }  →  ( ¬  𝑦  ≈  2o  ↔  ¬  { 𝐴 }  ≈  2o ) ) | 
						
							| 18 | 13 1 15 17 | ralpr | ⊢ ( ∀ 𝑦  ∈  { ∅ ,  { 𝐴 } } ¬  𝑦  ≈  2o  ↔  ( ¬  ∅  ≈  2o  ∧  ¬  { 𝐴 }  ≈  2o ) ) | 
						
							| 19 | 11 12 18 | mpbir2an | ⊢ ∀ 𝑦  ∈  { ∅ ,  { 𝐴 } } ¬  𝑦  ≈  2o | 
						
							| 20 |  | pwsn | ⊢ 𝒫  { 𝐴 }  =  { ∅ ,  { 𝐴 } } | 
						
							| 21 | 20 | raleqi | ⊢ ( ∀ 𝑦  ∈  𝒫  { 𝐴 } ¬  𝑦  ≈  2o  ↔  ∀ 𝑦  ∈  { ∅ ,  { 𝐴 } } ¬  𝑦  ≈  2o ) | 
						
							| 22 | 19 21 | mpbir | ⊢ ∀ 𝑦  ∈  𝒫  { 𝐴 } ¬  𝑦  ≈  2o | 
						
							| 23 |  | rabeq0 | ⊢ ( { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  =  ∅  ↔  ∀ 𝑦  ∈  𝒫  { 𝐴 } ¬  𝑦  ≈  2o ) | 
						
							| 24 | 22 23 | mpbir | ⊢ { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  =  ∅ | 
						
							| 25 | 24 | rabeqi | ⊢ { 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ∣  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) )  ∈  V }  =  { 𝑝  ∈  ∅  ∣  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) )  ∈  V } | 
						
							| 26 |  | rab0 | ⊢ { 𝑝  ∈  ∅  ∣  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) )  ∈  V }  =  ∅ | 
						
							| 27 | 6 25 26 | 3eqtri | ⊢ dom  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ∅ | 
						
							| 28 |  | mptrel | ⊢ Rel  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) ) | 
						
							| 29 |  | reldm0 | ⊢ ( Rel  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  →  ( ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ∅  ↔  dom  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ∅ ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ ( ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ∅  ↔  dom  ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ∅ ) | 
						
							| 31 | 27 30 | mpbir | ⊢ ( 𝑝  ∈  { 𝑦  ∈  𝒫  { 𝐴 }  ∣  𝑦  ≈  2o }  ↦  ( 𝑧  ∈  { 𝐴 }  ↦  if ( 𝑧  ∈  𝑝 ,  ∪  ( 𝑝  ∖  { 𝑧 } ) ,  𝑧 ) ) )  =  ∅ | 
						
							| 32 | 4 31 | eqtri | ⊢ ( pmTrsp ‘ { 𝐴 } )  =  ∅ |