| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnsn.0 | ⊢ 𝐷  =  { 𝐴 } | 
						
							| 2 |  | psgnsn.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | psgnsn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | psgnsn.n | ⊢ 𝑁  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 6 | 5 | gsum0 | ⊢ ( 𝐺  Σg  ∅ )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 | 2 3 1 | symg1bas | ⊢ ( 𝐴  ∈  𝑉  →  𝐵  =  { { 〈 𝐴 ,  𝐴 〉 } } ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝑋  ∈  𝐵  ↔  𝑋  ∈  { { 〈 𝐴 ,  𝐴 〉 } } ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  { { 〈 𝐴 ,  𝐴 〉 } } ) | 
						
							| 10 |  | elsni | ⊢ ( 𝑋  ∈  { { 〈 𝐴 ,  𝐴 〉 } }  →  𝑋  =  { 〈 𝐴 ,  𝐴 〉 } ) | 
						
							| 11 | 1 | reseq2i | ⊢ (  I   ↾  𝐷 )  =  (  I   ↾  { 𝐴 } ) | 
						
							| 12 |  | snex | ⊢ { 𝐴 }  ∈  V | 
						
							| 13 | 12 | snid | ⊢ { 𝐴 }  ∈  { { 𝐴 } } | 
						
							| 14 | 1 13 | eqeltri | ⊢ 𝐷  ∈  { { 𝐴 } } | 
						
							| 15 | 2 | symgid | ⊢ ( 𝐷  ∈  { { 𝐴 } }  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  𝐷 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 17 |  | restidsing | ⊢ (  I   ↾  { 𝐴 } )  =  ( { 𝐴 }  ×  { 𝐴 } ) | 
						
							| 18 |  | xpsng | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( { 𝐴 }  ×  { 𝐴 } )  =  { 〈 𝐴 ,  𝐴 〉 } ) | 
						
							| 19 | 18 | anidms | ⊢ ( 𝐴  ∈  𝑉  →  ( { 𝐴 }  ×  { 𝐴 } )  =  { 〈 𝐴 ,  𝐴 〉 } ) | 
						
							| 20 | 17 19 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  (  I   ↾  { 𝐴 } )  =  { 〈 𝐴 ,  𝐴 〉 } ) | 
						
							| 21 | 11 16 20 | 3eqtr3a | ⊢ ( 𝐴  ∈  𝑉  →  ( 0g ‘ 𝐺 )  =  { 〈 𝐴 ,  𝐴 〉 } ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 0g ‘ 𝐺 )  =  { 〈 𝐴 ,  𝐴 〉 } ) | 
						
							| 23 |  | id | ⊢ ( { 〈 𝐴 ,  𝐴 〉 }  =  𝑋  →  { 〈 𝐴 ,  𝐴 〉 }  =  𝑋 ) | 
						
							| 24 | 23 | eqcoms | ⊢ ( 𝑋  =  { 〈 𝐴 ,  𝐴 〉 }  →  { 〈 𝐴 ,  𝐴 〉 }  =  𝑋 ) | 
						
							| 25 | 22 24 | sylan9eqr | ⊢ ( ( 𝑋  =  { 〈 𝐴 ,  𝐴 〉 }  ∧  ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 ) )  →  ( 0g ‘ 𝐺 )  =  𝑋 ) | 
						
							| 26 | 25 | ex | ⊢ ( 𝑋  =  { 〈 𝐴 ,  𝐴 〉 }  →  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 0g ‘ 𝐺 )  =  𝑋 ) ) | 
						
							| 27 | 10 26 | syl | ⊢ ( 𝑋  ∈  { { 〈 𝐴 ,  𝐴 〉 } }  →  ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 0g ‘ 𝐺 )  =  𝑋 ) ) | 
						
							| 28 | 9 27 | mpcom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 0g ‘ 𝐺 )  =  𝑋 ) | 
						
							| 29 | 6 28 | eqtr2id | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  𝑋  =  ( 𝐺  Σg  ∅ ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  =  ( 𝑁 ‘ ( 𝐺  Σg  ∅ ) ) ) | 
						
							| 31 | 1 12 | eqeltri | ⊢ 𝐷  ∈  V | 
						
							| 32 |  | wrd0 | ⊢ ∅  ∈  Word  ∅ | 
						
							| 33 | 31 32 | pm3.2i | ⊢ ( 𝐷  ∈  V  ∧  ∅  ∈  Word  ∅ ) | 
						
							| 34 | 1 | fveq2i | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ { 𝐴 } ) | 
						
							| 35 |  | pmtrsn | ⊢ ( pmTrsp ‘ { 𝐴 } )  =  ∅ | 
						
							| 36 | 34 35 | eqtri | ⊢ ( pmTrsp ‘ 𝐷 )  =  ∅ | 
						
							| 37 | 36 | rneqi | ⊢ ran  ( pmTrsp ‘ 𝐷 )  =  ran  ∅ | 
						
							| 38 |  | rn0 | ⊢ ran  ∅  =  ∅ | 
						
							| 39 | 37 38 | eqtr2i | ⊢ ∅  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 40 | 2 39 4 | psgnvalii | ⊢ ( ( 𝐷  ∈  V  ∧  ∅  ∈  Word  ∅ )  →  ( 𝑁 ‘ ( 𝐺  Σg  ∅ ) )  =  ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) | 
						
							| 41 | 33 40 | mp1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ ( 𝐺  Σg  ∅ ) )  =  ( - 1 ↑ ( ♯ ‘ ∅ ) ) ) | 
						
							| 42 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 43 | 42 | oveq2i | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) )  =  ( - 1 ↑ 0 ) | 
						
							| 44 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 45 |  | exp0 | ⊢ ( - 1  ∈  ℂ  →  ( - 1 ↑ 0 )  =  1 ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( - 1 ↑ 0 )  =  1 | 
						
							| 47 | 43 46 | eqtri | ⊢ ( - 1 ↑ ( ♯ ‘ ∅ ) )  =  1 | 
						
							| 48 | 47 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( - 1 ↑ ( ♯ ‘ ∅ ) )  =  1 ) | 
						
							| 49 | 30 41 48 | 3eqtrd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁 ‘ 𝑋 )  =  1 ) |