| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnsn.0 |  |-  D = { A } | 
						
							| 2 |  | psgnsn.g |  |-  G = ( SymGrp ` D ) | 
						
							| 3 |  | psgnsn.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | psgnsn.n |  |-  N = ( pmSgn ` D ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 6 | 5 | gsum0 |  |-  ( G gsum (/) ) = ( 0g ` G ) | 
						
							| 7 | 2 3 1 | symg1bas |  |-  ( A e. V -> B = { { <. A , A >. } } ) | 
						
							| 8 | 7 | eleq2d |  |-  ( A e. V -> ( X e. B <-> X e. { { <. A , A >. } } ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( A e. V /\ X e. B ) -> X e. { { <. A , A >. } } ) | 
						
							| 10 |  | elsni |  |-  ( X e. { { <. A , A >. } } -> X = { <. A , A >. } ) | 
						
							| 11 | 1 | reseq2i |  |-  ( _I |` D ) = ( _I |` { A } ) | 
						
							| 12 |  | snex |  |-  { A } e. _V | 
						
							| 13 | 12 | snid |  |-  { A } e. { { A } } | 
						
							| 14 | 1 13 | eqeltri |  |-  D e. { { A } } | 
						
							| 15 | 2 | symgid |  |-  ( D e. { { A } } -> ( _I |` D ) = ( 0g ` G ) ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( A e. V -> ( _I |` D ) = ( 0g ` G ) ) | 
						
							| 17 |  | restidsing |  |-  ( _I |` { A } ) = ( { A } X. { A } ) | 
						
							| 18 |  | xpsng |  |-  ( ( A e. V /\ A e. V ) -> ( { A } X. { A } ) = { <. A , A >. } ) | 
						
							| 19 | 18 | anidms |  |-  ( A e. V -> ( { A } X. { A } ) = { <. A , A >. } ) | 
						
							| 20 | 17 19 | eqtrid |  |-  ( A e. V -> ( _I |` { A } ) = { <. A , A >. } ) | 
						
							| 21 | 11 16 20 | 3eqtr3a |  |-  ( A e. V -> ( 0g ` G ) = { <. A , A >. } ) | 
						
							| 22 | 21 | adantr |  |-  ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = { <. A , A >. } ) | 
						
							| 23 |  | id |  |-  ( { <. A , A >. } = X -> { <. A , A >. } = X ) | 
						
							| 24 | 23 | eqcoms |  |-  ( X = { <. A , A >. } -> { <. A , A >. } = X ) | 
						
							| 25 | 22 24 | sylan9eqr |  |-  ( ( X = { <. A , A >. } /\ ( A e. V /\ X e. B ) ) -> ( 0g ` G ) = X ) | 
						
							| 26 | 25 | ex |  |-  ( X = { <. A , A >. } -> ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = X ) ) | 
						
							| 27 | 10 26 | syl |  |-  ( X e. { { <. A , A >. } } -> ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = X ) ) | 
						
							| 28 | 9 27 | mpcom |  |-  ( ( A e. V /\ X e. B ) -> ( 0g ` G ) = X ) | 
						
							| 29 | 6 28 | eqtr2id |  |-  ( ( A e. V /\ X e. B ) -> X = ( G gsum (/) ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( ( A e. V /\ X e. B ) -> ( N ` X ) = ( N ` ( G gsum (/) ) ) ) | 
						
							| 31 | 1 12 | eqeltri |  |-  D e. _V | 
						
							| 32 |  | wrd0 |  |-  (/) e. Word (/) | 
						
							| 33 | 31 32 | pm3.2i |  |-  ( D e. _V /\ (/) e. Word (/) ) | 
						
							| 34 | 1 | fveq2i |  |-  ( pmTrsp ` D ) = ( pmTrsp ` { A } ) | 
						
							| 35 |  | pmtrsn |  |-  ( pmTrsp ` { A } ) = (/) | 
						
							| 36 | 34 35 | eqtri |  |-  ( pmTrsp ` D ) = (/) | 
						
							| 37 | 36 | rneqi |  |-  ran ( pmTrsp ` D ) = ran (/) | 
						
							| 38 |  | rn0 |  |-  ran (/) = (/) | 
						
							| 39 | 37 38 | eqtr2i |  |-  (/) = ran ( pmTrsp ` D ) | 
						
							| 40 | 2 39 4 | psgnvalii |  |-  ( ( D e. _V /\ (/) e. Word (/) ) -> ( N ` ( G gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) ) | 
						
							| 41 | 33 40 | mp1i |  |-  ( ( A e. V /\ X e. B ) -> ( N ` ( G gsum (/) ) ) = ( -u 1 ^ ( # ` (/) ) ) ) | 
						
							| 42 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 43 | 42 | oveq2i |  |-  ( -u 1 ^ ( # ` (/) ) ) = ( -u 1 ^ 0 ) | 
						
							| 44 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 45 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 46 | 44 45 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 47 | 43 46 | eqtri |  |-  ( -u 1 ^ ( # ` (/) ) ) = 1 | 
						
							| 48 | 47 | a1i |  |-  ( ( A e. V /\ X e. B ) -> ( -u 1 ^ ( # ` (/) ) ) = 1 ) | 
						
							| 49 | 30 41 48 | 3eqtrd |  |-  ( ( A e. V /\ X e. B ) -> ( N ` X ) = 1 ) |