| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relres | 
							 |-  Rel ( _I |` { A } ) | 
						
						
							| 2 | 
							
								
							 | 
							relxp | 
							 |-  Rel ( { A } X. { A } ) | 
						
						
							| 3 | 
							
								
							 | 
							velsn | 
							 |-  ( x e. { A } <-> x = A ) | 
						
						
							| 4 | 
							
								
							 | 
							velsn | 
							 |-  ( y e. { A } <-> y = A ) | 
						
						
							| 5 | 
							
								3 4
							 | 
							anbi12i | 
							 |-  ( ( x e. { A } /\ y e. { A } ) <-> ( x = A /\ y = A ) ) | 
						
						
							| 6 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 7 | 
							
								6
							 | 
							ideq | 
							 |-  ( x _I y <-> x = y )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							anbi12i | 
							 |-  ( ( x e. { A } /\ x _I y ) <-> ( x = A /\ x = y ) ) | 
						
						
							| 9 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = A -> ( x = y <-> A = y ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqcom | 
							 |-  ( A = y <-> y = A )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bitrdi | 
							 |-  ( x = A -> ( x = y <-> y = A ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							pm5.32i | 
							 |-  ( ( x = A /\ x = y ) <-> ( x = A /\ y = A ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							bitri | 
							 |-  ( ( x e. { A } /\ x _I y ) <-> ( x = A /\ y = A ) ) | 
						
						
							| 14 | 
							
								
							 | 
							df-br | 
							 |-  ( x _I y <-> <. x , y >. e. _I )  | 
						
						
							| 15 | 
							
								14
							 | 
							anbi2i | 
							 |-  ( ( x e. { A } /\ x _I y ) <-> ( x e. { A } /\ <. x , y >. e. _I ) ) | 
						
						
							| 16 | 
							
								5 13 15
							 | 
							3bitr2ri | 
							 |-  ( ( x e. { A } /\ <. x , y >. e. _I ) <-> ( x e. { A } /\ y e. { A } ) ) | 
						
						
							| 17 | 
							
								6
							 | 
							opelresi | 
							 |-  ( <. x , y >. e. ( _I |` { A } ) <-> ( x e. { A } /\ <. x , y >. e. _I ) ) | 
						
						
							| 18 | 
							
								
							 | 
							opelxp | 
							 |-  ( <. x , y >. e. ( { A } X. { A } ) <-> ( x e. { A } /\ y e. { A } ) ) | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3bitr4i | 
							 |-  ( <. x , y >. e. ( _I |` { A } ) <-> <. x , y >. e. ( { A } X. { A } ) ) | 
						
						
							| 20 | 
							
								1 2 19
							 | 
							eqrelriiv | 
							 |-  ( _I |` { A } ) = ( { A } X. { A } ) |