| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnprfval.0 |  |-  D = { 1 , 2 } | 
						
							| 2 |  | psgnprfval.g |  |-  G = ( SymGrp ` D ) | 
						
							| 3 |  | psgnprfval.b |  |-  B = ( Base ` G ) | 
						
							| 4 |  | psgnprfval.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 5 |  | psgnprfval.n |  |-  N = ( pmSgn ` D ) | 
						
							| 6 |  | id |  |-  ( X e. B -> X e. B ) | 
						
							| 7 |  | elpri |  |-  ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) | 
						
							| 8 |  | prfi |  |-  { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin | 
						
							| 9 |  | eleq1 |  |-  ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( X e. Fin <-> { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin ) ) | 
						
							| 10 | 8 9 | mpbiri |  |-  ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> X e. Fin ) | 
						
							| 11 |  | prfi |  |-  { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin | 
						
							| 12 |  | eleq1 |  |-  ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( X e. Fin <-> { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin ) ) | 
						
							| 13 | 11 12 | mpbiri |  |-  ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> X e. Fin ) | 
						
							| 14 | 10 13 | jaoi |  |-  ( ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> X e. Fin ) | 
						
							| 15 |  | diffi |  |-  ( X e. Fin -> ( X \ _I ) e. Fin ) | 
						
							| 16 |  | dmfi |  |-  ( ( X \ _I ) e. Fin -> dom ( X \ _I ) e. Fin ) | 
						
							| 17 | 7 14 15 16 | 4syl |  |-  ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> dom ( X \ _I ) e. Fin ) | 
						
							| 18 |  | 1ex |  |-  1 e. _V | 
						
							| 19 |  | 2nn |  |-  2 e. NN | 
						
							| 20 | 2 3 1 | symg2bas |  |-  ( ( 1 e. _V /\ 2 e. NN ) -> B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) | 
						
							| 21 | 18 19 20 | mp2an |  |-  B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } | 
						
							| 22 | 17 21 | eleq2s |  |-  ( X e. B -> dom ( X \ _I ) e. Fin ) | 
						
							| 23 | 2 5 3 | psgneldm |  |-  ( X e. dom N <-> ( X e. B /\ dom ( X \ _I ) e. Fin ) ) | 
						
							| 24 | 6 22 23 | sylanbrc |  |-  ( X e. B -> X e. dom N ) | 
						
							| 25 | 2 4 5 | psgnval |  |-  ( X e. dom N -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) | 
						
							| 27 | 6 26 | syl |  |-  ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |