Step |
Hyp |
Ref |
Expression |
1 |
|
psgnprfval.0 |
|- D = { 1 , 2 } |
2 |
|
psgnprfval.g |
|- G = ( SymGrp ` D ) |
3 |
|
psgnprfval.b |
|- B = ( Base ` G ) |
4 |
|
psgnprfval.t |
|- T = ran ( pmTrsp ` D ) |
5 |
|
psgnprfval.n |
|- N = ( pmSgn ` D ) |
6 |
|
id |
|- ( X e. B -> X e. B ) |
7 |
|
elpri |
|- ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
8 |
|
prfi |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin |
9 |
|
eleq1 |
|- ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( X e. Fin <-> { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin ) ) |
10 |
8 9
|
mpbiri |
|- ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> X e. Fin ) |
11 |
|
prfi |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin |
12 |
|
eleq1 |
|- ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( X e. Fin <-> { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin ) ) |
13 |
11 12
|
mpbiri |
|- ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> X e. Fin ) |
14 |
10 13
|
jaoi |
|- ( ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> X e. Fin ) |
15 |
|
diffi |
|- ( X e. Fin -> ( X \ _I ) e. Fin ) |
16 |
14 15
|
syl |
|- ( ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( X \ _I ) e. Fin ) |
17 |
|
dmfi |
|- ( ( X \ _I ) e. Fin -> dom ( X \ _I ) e. Fin ) |
18 |
7 16 17
|
3syl |
|- ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> dom ( X \ _I ) e. Fin ) |
19 |
|
1ex |
|- 1 e. _V |
20 |
|
2nn |
|- 2 e. NN |
21 |
2 3 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
22 |
19 20 21
|
mp2an |
|- B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
23 |
18 22
|
eleq2s |
|- ( X e. B -> dom ( X \ _I ) e. Fin ) |
24 |
2 5 3
|
psgneldm |
|- ( X e. dom N <-> ( X e. B /\ dom ( X \ _I ) e. Fin ) ) |
25 |
6 23 24
|
sylanbrc |
|- ( X e. B -> X e. dom N ) |
26 |
2 4 5
|
psgnval |
|- ( X e. dom N -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
27 |
25 26
|
syl |
|- ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
28 |
6 27
|
syl |
|- ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |