Metamath Proof Explorer


Theorem psgnprfval

Description: The permutation sign function for a pair. (Contributed by AV, 10-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0
|- D = { 1 , 2 }
psgnprfval.g
|- G = ( SymGrp ` D )
psgnprfval.b
|- B = ( Base ` G )
psgnprfval.t
|- T = ran ( pmTrsp ` D )
psgnprfval.n
|- N = ( pmSgn ` D )
Assertion psgnprfval
|- ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) )

Proof

Step Hyp Ref Expression
1 psgnprfval.0
 |-  D = { 1 , 2 }
2 psgnprfval.g
 |-  G = ( SymGrp ` D )
3 psgnprfval.b
 |-  B = ( Base ` G )
4 psgnprfval.t
 |-  T = ran ( pmTrsp ` D )
5 psgnprfval.n
 |-  N = ( pmSgn ` D )
6 id
 |-  ( X e. B -> X e. B )
7 elpri
 |-  ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) )
8 prfi
 |-  { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin
9 eleq1
 |-  ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( X e. Fin <-> { <. 1 , 1 >. , <. 2 , 2 >. } e. Fin ) )
10 8 9 mpbiri
 |-  ( X = { <. 1 , 1 >. , <. 2 , 2 >. } -> X e. Fin )
11 prfi
 |-  { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin
12 eleq1
 |-  ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( X e. Fin <-> { <. 1 , 2 >. , <. 2 , 1 >. } e. Fin ) )
13 11 12 mpbiri
 |-  ( X = { <. 1 , 2 >. , <. 2 , 1 >. } -> X e. Fin )
14 10 13 jaoi
 |-  ( ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> X e. Fin )
15 diffi
 |-  ( X e. Fin -> ( X \ _I ) e. Fin )
16 14 15 syl
 |-  ( ( X = { <. 1 , 1 >. , <. 2 , 2 >. } \/ X = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( X \ _I ) e. Fin )
17 dmfi
 |-  ( ( X \ _I ) e. Fin -> dom ( X \ _I ) e. Fin )
18 7 16 17 3syl
 |-  ( X e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> dom ( X \ _I ) e. Fin )
19 1ex
 |-  1 e. _V
20 2nn
 |-  2 e. NN
21 2 3 1 symg2bas
 |-  ( ( 1 e. _V /\ 2 e. NN ) -> B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } )
22 19 20 21 mp2an
 |-  B = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } }
23 18 22 eleq2s
 |-  ( X e. B -> dom ( X \ _I ) e. Fin )
24 2 5 3 psgneldm
 |-  ( X e. dom N <-> ( X e. B /\ dom ( X \ _I ) e. Fin ) )
25 6 23 24 sylanbrc
 |-  ( X e. B -> X e. dom N )
26 2 4 5 psgnval
 |-  ( X e. dom N -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) )
27 25 26 syl
 |-  ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) )
28 6 27 syl
 |-  ( X e. B -> ( N ` X ) = ( iota s E. w e. Word T ( X = ( G gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) )