Metamath Proof Explorer


Theorem symg1bas

Description: The symmetric group on a singleton is the symmetric group S_1 consisting of the identity only. (Contributed by AV, 9-Dec-2018)

Ref Expression
Hypotheses symg1bas.1 𝐺 = ( SymGrp ‘ 𝐴 )
symg1bas.2 𝐵 = ( Base ‘ 𝐺 )
symg1bas.0 𝐴 = { 𝐼 }
Assertion symg1bas ( 𝐼𝑉𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ } } )

Proof

Step Hyp Ref Expression
1 symg1bas.1 𝐺 = ( SymGrp ‘ 𝐴 )
2 symg1bas.2 𝐵 = ( Base ‘ 𝐺 )
3 symg1bas.0 𝐴 = { 𝐼 }
4 1 2 symgbas 𝐵 = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
5 eqidd ( 𝐴 = { 𝐼 } → 𝑝 = 𝑝 )
6 id ( 𝐴 = { 𝐼 } → 𝐴 = { 𝐼 } )
7 5 6 6 f1oeq123d ( 𝐴 = { 𝐼 } → ( 𝑝 : 𝐴1-1-onto𝐴𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ) )
8 3 7 ax-mp ( 𝑝 : 𝐴1-1-onto𝐴𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } )
9 f1of ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } → 𝑝 : { 𝐼 } ⟶ { 𝐼 } )
10 fsng ( ( 𝐼𝑉𝐼𝑉 ) → ( 𝑝 : { 𝐼 } ⟶ { 𝐼 } ↔ 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } ) )
11 10 anidms ( 𝐼𝑉 → ( 𝑝 : { 𝐼 } ⟶ { 𝐼 } ↔ 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } ) )
12 9 11 syl5ib ( 𝐼𝑉 → ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } → 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } ) )
13 f1osng ( ( 𝐼𝑉𝐼𝑉 ) → { ⟨ 𝐼 , 𝐼 ⟩ } : { 𝐼 } –1-1-onto→ { 𝐼 } )
14 13 anidms ( 𝐼𝑉 → { ⟨ 𝐼 , 𝐼 ⟩ } : { 𝐼 } –1-1-onto→ { 𝐼 } )
15 f1oeq1 ( 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } → ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ↔ { ⟨ 𝐼 , 𝐼 ⟩ } : { 𝐼 } –1-1-onto→ { 𝐼 } ) )
16 14 15 syl5ibrcom ( 𝐼𝑉 → ( 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } → 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ) )
17 12 16 impbid ( 𝐼𝑉 → ( 𝑝 : { 𝐼 } –1-1-onto→ { 𝐼 } ↔ 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } ) )
18 8 17 syl5bb ( 𝐼𝑉 → ( 𝑝 : 𝐴1-1-onto𝐴𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } ) )
19 vex 𝑝 ∈ V
20 f1oeq1 ( 𝑓 = 𝑝 → ( 𝑓 : 𝐴1-1-onto𝐴𝑝 : 𝐴1-1-onto𝐴 ) )
21 19 20 elab ( 𝑝 ∈ { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ↔ 𝑝 : 𝐴1-1-onto𝐴 )
22 velsn ( 𝑝 ∈ { { ⟨ 𝐼 , 𝐼 ⟩ } } ↔ 𝑝 = { ⟨ 𝐼 , 𝐼 ⟩ } )
23 18 21 22 3bitr4g ( 𝐼𝑉 → ( 𝑝 ∈ { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ↔ 𝑝 ∈ { { ⟨ 𝐼 , 𝐼 ⟩ } } ) )
24 23 eqrdv ( 𝐼𝑉 → { 𝑓𝑓 : 𝐴1-1-onto𝐴 } = { { ⟨ 𝐼 , 𝐼 ⟩ } } )
25 4 24 syl5eq ( 𝐼𝑉𝐵 = { { ⟨ 𝐼 , 𝐼 ⟩ } } )